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ABSTRACT
Entomopathogenic nematodes are natural enemies and effective
biological control agents of subterranean insect herbivores.
Interactions between herbivores, plants, and entomopathogenic
nematodes are mediated by plant defense pathways. These
pathways can induce release of volatiles and recruit
entomopathogenic nematodes. Stimulation of these plant defense
pathways for induced defense against belowground herbivory
may enhance biological control in the field. Knowledge of the
factors affecting entomopathogenic nematode behaviour
belowground is needed to effectively implement such strategies.
To that end, we explore the effect of elicitor, elicitor dose,
mechanical damage, and entomopathogenic nematode release
distance on recruitment of entomopathogenic nematode infective
juveniles to corn seedlings. Increasing doses of methyl jasmonate
and methyl salicylate elicitors recruited more entomopathogenic
nematodes as did mechanical damage. Recruitment of
entomopathogenic nematodes was higher at greater release
distances. These results suggest entomopathogenic nematodes
are highly tuned to plant status and present a strategy for
enhancing biological control using elicitor-stimulated recruitment
of entomopathogenic nematodes.
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1. Introduction

Entomopathogenic nematodes are natural enemies of belowground insect herbivores that
have shown promise for biological control in subterranean and cryptic environments
(Gaugler & Kaya, 1990). Applications of entomopathogenic nematodes for biocontrol is
effective in a variety of cropping systems and new strategies are being developed to
extend the abilities of entomopathogenic nematodes to control previously inaccessible
pests. Entomopathogenic nematodes have been effective control agents for diptera in
mushroom houses (Kaya & Gaugler, 1993), for mole crickets and scarab larvae in turf
(Koppenhöfer & Fuzy, 2009; Parkman & Smart Jr, 1996), for weevil herbivores in citrus
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(McCoy, Shapiro, Duncan, & Nguyen, 2000; Stuart, Shapiro-Ilan, James, Nguyen &
McCoy, 2004), and for corn rootworm Diabrotica virgifera virgifera larvae in corn
(Journey & Ostlie, 2000; Toepfer, Peters, Ehlers, & Kuhlmann, 2008), among others
(Georgis et al., 2006; Lacey et al., 2015; Lacey & Georgis, 2012). Extending and enhancing
the effectivenes of entomopathogenic nematodes of biological control agents has long been
a goal and various means of augmentation including plant genetic manipulation and
nematode encapsulation have been pursued (Degenhardt et al., 2009; Hiltpold, Hibbard,
French, & Turlings, 2012).

Plant volatiles are critical to developing new strategies for enhancing biological control
with entomopathogenic nematodes (Turlings, Hiltpold, & Rasmann, 2012; Turlings &
Ton, 2006). These strategies appropriate existing communication systems in plants that
recruit entomopathogenic nematodes to sites of belowground herbivory. In citrus, for
example, herbivory by larvae of the weevil Diaprepes abbreviatus releases the herbivore
induced plant volatile pregeijerene which recruits a wide range of entomopathogenic
nematodes (Ali et al., 2012; Ali, Alborn, & Stelinski, 2010, 2011). Similarly, herbivory
by weevil larvae on white cedar Thuja occidentalis recruits the entomopathogenic nema-
tode Heterorhabditis megidis (Van Tol et al., 2001). In corn, herbivory by larvae of the
western corn rootworm Diabrotica virgifera virgifera results in the release of E-β caryo-
phyllene which recruits H. megidis (Rasmann et al., 2005).

Recruitment of entomopathogenic nematodes belowground is mediated by plant
defense pathways which regulate plant responses to herbivory and pathogen infection
(Bezemer & van Dam, 2005; Bezemer, Wagenaar, Van Dam, & Wäckers, 2003). While
induction of these pathways can regulate release of plant volatiles belowground as
described above, stimulation of these pathways in the absence of herbivory can also
produce effects belowground, potentially regulating responses to pest-pathogen complexes
(Filgueiras et al., 2016a). Indeed, induction of plant defense pathways aboveground can
influence recruitment of natural enemies belowground and vice versa (Rasmann & Tur-
lings, 2007). The two most prominent pathways likely to mediate recruitment of entomo-
pathogenic nematodes belowground are the jasmonic acid and salicylic acid pathways. The
jasmonic acid pathway is thought to be stimulated mainly by herbivory and often results in
upregulation of plant defenses targeting herbivorous pests (Thaler, Humphrey, & White-
man, 2012). In contrast, the salicylic acid pathway is thought to be stimulated by and
mediate resistance to biotrophic pathogen infection (Glazebrook, 2005). Additionally,
both pathways have been implicated in the recruitment of natural enemies aboveground
(Thaler, 1999b; van Poecke & Dicke, 2002) and recent work suggests they could be acting
similarly belowground (Filgueiras et al., 2016b).

The role these pathways play in mediating interactions between plants, herbivores, and
natural enemies has prompted exploration of the possibility of applying plant defense eli-
citors for induction of plant resistance in the field. Results of this strategy aboveground
have been promising. Stimulation of the jasmonic acid pathway in tomatoes reduces
aboveground herbivory with no detrimental effects on yield (Thaler, 1999a) and is associ-
ated with reduction in abundance of many herbivores (Thaler, Stout, Karban, & Duffey,
2001). Similarly, induced resistance through stimulation of the salicylic acid pathway
can reduce bacterial infection (Thaler, Fidantsef, Duffey, & Bostock, 1999). Development
of practical applications of elictors of induced defense for recruitment of
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entomopathogenic nematodes belowground is being explored and will rely upon knowl-
edge of parameters affecting nematode behaviour and application efficacy.

To explore these parameters, we use a corn model system involving the larval her-
bivore Diabrotica speciosa, a polyphagous and ubiquitous pest of corn in South
America (Metcalf, Krysan, & Miller, 2012; Walsh, 2003), and the entomopathogenic
nematode Heterorhabditis amazonensis, a natural enemy of D. speciosa with potential
for biocontrol (Figure 1) (Andaló, Nguyen, & Moino, 2006; Santos, Moino, Moreira, &
Olinda, 2011). The potential for using elicitor stimulated induced defenses in this
system has been raised (Filgueiras et al., 2016b); here we explore the effect of elicitor,
elicitor dose, plant damage, and distance on recruitment of entomopathogenic nema-
todes belowground.

2. Materials and methods

To explore methods of using elicitors of plant defense to augment biological control of
larval D. speciosa using entomopathogenic nematodes, we evaluated distance of nematode
release and doses of elicitors as possible factors affecting efficacy of entomopathogenic
nematode recruitment and control. Elicitors were applied foliarly while nematode
response and infection were evaluated belowground in sand filled arenas.

Figure 1. Model system involving corn (A) to which plant defense elicitors Methyl Salicylate (B) and
Methyl Jasmonate (C) were applied. In the field, stimulation of plant defense pathways mediates inter-
actions between larval Diabrotica speciosa (D) and its natural enemy the entomopathogenic nematode
Heterorhabditis amazonensis (E).
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2.1. Organisms

Maize seedlings were germinated inmoist vermiculite and used after cultivation for 20 days in
organic substrate. While under cultivation, maize seedlings were kept in a growth chamber at
25 ± 2.0°C with a 12:12 light:dark cycle. A maize line TC1507 in widespread use throughout
Brazil expressing the Herculex I gene (Dow AgroSciences, Pioneer Hi-Bred International),
was used in all experiments. H. amazonenensis entomopathogenic nematodes from cultures
maintained at the Federal University of Lavras were reared in larvae of the greater wax moth
Galleria mellonela and infective juveniles collected using white traps (Kaya & Stock, 1997;
White, 1927). Collected nematodes were used in experiments within a week of collection.Gal-
leria larvae used for rearing entomopathogenic nematodes were likewise reared in the labora-
tory on artificial diet (Dutky, Thompson, & Cantwell, 1962; Parra, 1986).

2.2. Elicitor preparations

Methyl jasmonate (Sigma Aldrich, 95% purity) and methyl salicylate (Sigma Aldrich, 99%
purity) elicitors were applied foliarly to corn seedlings in Tween20 (at 0.1mL/L) and
ethanol (at 2.5mL/L) solutions using 30ml calibrated sprays while ensuring homo-
geneous uniform application as in (Filgueiras et al., 2016a, 2016b). Control plants received
spray solutions without elicitors, i.e. only Tween20-ethanol solutions. Applications were
prevented from entering the soil using an aluminum foil barrier.

2.3. Dose response

To evaluate the effect of different elicitor doses on recruitment of the entomopathogenic
nematode H. amazonensis eight-choice olfactometers filled with washed autoclaved sand
adjusted to 10% moisture by volume were used. Eight-choice olfactometers were con-
structed from 30 cm diameter plastic containers into which eight 4 cm diameter PVC
elbows were inserted (Filgueiras et al., 2016b). Each elbow received one corn seedling
which was allowed 72 hours to acclimate to the olfactometer environment prior to receiv-
ing elicitor treatment. Methyl salicylate was applied in solutions prepared as described
above such that seedlings received either 0, 65, 130, or 260mL total compound. Similarly,
methyl jasmonate was applied in solutions prepared as described above such that seedlings
received either 0, 109, 218, or 436mL. Doses were calculated based on previous work (Fil-
gueiras et al., 2016a) because they provided a biologic response. Treatments were arranged
in alternating opposition around the eight-choice olfactometer. Forty-eight hours follow-
ing treatment application, 2500 H. amazonensis infective juveniles were released into the
centre of each olfactometer. After allowing 24 hours for nematodes to respond, olfact-
ometers were disassembled and nematodes collected from the elbows via Baermann
funnels and counted. Ten replications (i.e. olfactometers) for each elicitor with different
nematode batches were conducted across all four doses.

2.4. Elicitor comparison

To determine if nematodes were more responsive to stimulation of either the jasmonic
acid or salicylic acid pathway, contrasts between plants treated with methyl jasmonate
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(at 130mL) and methyl salicylate (218mL) were conducted as above in eight-choice sand
filled olfactometers observing the same schedule for seedling planting, application of eli-
citor treatments, and collection of nematodes. In this case, instead of evaluating effects
versus untreated corn seedlings, nematode response to methyl jasmonate treated plants
versus methyl salicylate treated plants was evaluated in both healthy and mechanically
damaged plants. Mechanically damaged plants received foliar damage with a scalpel
using a template to replicate feeding by adult D. speciosa with 3 cm2 total leaf area
removed. Four replications (i.e. olfactometers) of each treatment combination were con-
ducted with different nematode batches.

2.5. Distance assays

The effect of distance on recruitment of entomopathogenic nematodes to elicitor treated
and mechanically damaged corn plants was evaluated in 20.5 cm by 20.5 cm by 75 cm rec-
tangular planters. Planters were filled with autoclaved sand adjusted to 10% moisture by
volume; a single corn seedling was placed at one end of the planter and allowed 72 hours to
acclimate to their environment. Following the application period, corn seedlings received
elicitor and damage treatment. Corn seedlings either received a control spray containing
no elicitors, 65mL of methyl salicylate, or 109mL of methyl jasmonate prepared as
described above. Damage treatment consisted of undamaged control plants or plants
receiving mechanical foliar damage with a scalpel mimicking herbivory by adult
D. speciosa. Forty-eight hours after corn seedlings received treatment, 3000 entomopatho-
genic nematode H. amazonensis infective juveniles were released either 30 or 60 cm from
the corn seedling. After allowing 24 hours for response, nematodes were extracted from
the root system of the seedlings using Baermann funnels and counted. Three replications
of each factor combination were conducted with different nematode batches.

2.6. Statistical analysis

Linear models and analysis of variance were used to evaluate the effect of elicitor dose on
entomopathogenic nematode H. amazonensis infective juvenile response in eight-choice
olfactometers. Infective juvenile response was summed across treatment within a given
olfactometer to remove effects of aggregation. Summed responses to treatments were con-
verted to percentages to evaluate additional attraction to increasing dose. Models were
chosen based on model significance, examining lack of fit, and ANOVA results. Responses
and residuals were examined by visual inspection of diagnostic plots, Shapiro–Wilk’s test,
and Levene’s test to ensure conformance with assumptions of normality and
homoscedasticity.

Nematode response to methyl jasmonate versus methyl salicylate treated corn seedlings
was first summed to obviate effects of nematode aggregation per olfactometer, then eval-
uated with paired t-tests after ensuring adherence to assumptions of normality and
homoscedasticity.

The effect of distance on recruitment of the entomopathogenic nematode
H. amazonensis to damaged and elicitor treated corn seedlings was evaluated with analysis
of variance (ANOVA) by using Distance, Damage, and Elicitor to explain nematode
response following interrogation with visual inspection of quantile-quantile plots,
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Shapiro–Wilk’s test, and Levene’s test to confirm adherence to assumptions of normality
and homoscedasticity.

All data were compiled in Microsoft Excel 2011 then analysed in R version 3.2.2 (R
Core Team, 2015) using the RStudio version 0.99.484 (RStudio Team, 2015) development
environment. The following packages were used to facilitate analysis above and beyond
base R functionality: dplyr (Wickham & Francois, 2015) and tidyr (Wickham, 2015) for
data management and summary statistics, ggplot2 (Wickham, 2009) for graphics capabili-
ties, xlsx (Dragulescu, 2014) for interface with Microsoft Excel, and car (Fox & Weisberg,
2011) for ANOVA analysis.

3. Results

3.1. Dose response

Methyl jasmonate dose significantly (F=16.173, df = 4, 6, P=0.002) explained 85.8% of
observed variation in H. amazonensis infective juvenile response to methyl jasmonate
treated seedlings. Similarly, methyl salicylate dose significantly (F=11.367, df=4,6,
P = 0.006) explained 80.5% of observed variation in H. amazonensis infective juvenile
response in eight-choice olfactometers. Additional infective juvenile attraction increased
by 2.4+ 2.9% with increasing doses of methyl jasmonate, then declined at the highest
doses (Figure 2). Increasing doses of methyl salicylate increased nematode attraction by,
on average, 12.6+ 5.1% (Figure 2).

3.2. Elicitor comparison

Following mechanical damage, methyl jasmonate treated plants recruited significantly
(t=4.7, df = 3, P=0.017) more H. amazonensis entomopathogenic nematodes than did
methyl salicylate treated plants. This preference was not observed in the undamaged
plants (t=−0.82, df = 3, P=0.47).

Figure 2. Additional H. amazonensis infective juvenile attraction to increasing doses of elicitors applied
to corn seedlings. Nematode attraction represents the per cent additional infective juveniles respond-
ing to that treatment over controls. Lines and shaded region denote mean response and standard error,
respectively.
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3.3. Distance assays

Distance and damage treatments significantly (F=11.95, df = 1, 23, P=0.002 for distance,
F=10.77, df = 1, 23, P=0.003 for damage) explained observed H. amazonensis response
(Figure 3). Elicitor treatment did not show significant effects (F=0.64, df = 2, 23,
P=0.535). An average of 6.21+ 1.8 more infective juveniles recruited to the seedling
when released at 60 cm distance as compared to 30 cm. An average of 5.9+ 1.8 more
infective juveniles recruited toward mechanically damaged corn seedlings as compared
to undamaged negative controls.

4. Discussion

Increasing doses of elicitors on aboveground foliage of corn seedlings recruit increas-
ingly more entomopathogenic nematodes belowground. This effect reverses at the
highest doses for methyl jasmonate, but is consistent for tested doses of methyl salicylate
(Figure 2). In addition, stimulation of the jasmonic acid pathway seems to be attractive
in the presence of mechanical damage (Figure 4). These results emphasise the role of
plant defense pathways in mediating belowground recruitment of entomopathogenic
nematodes and suggest that increased induction of plant defense pathways could poten-
tially augment control. The differential appeal of methyl jasmonate versus methyl sali-
cylate application on mechanically damaged versus undamaged plants suggests that
entomopathogenic nematodes can closely monitor differences in plant health, above
and beyond recognition of herbivore presence as observed previously in corn and
citrus (Ali et al., 2010; Rasmann et al., 2005).

The significant effect of damage in distance assays seems to confirm this observation.
Mechanically damaged plants recruited more entomopathogenic nematodes versus unda-
maged seedlings (Figure 3). In addition to suggesting a broad role for plant signaling
belowground, differential recruitment to mechanically damaged seedlings also may
present opportunities for adaptive control in the field. Because mechanically damaged
seedlings in which the jasmonic defense pathway is stimulated are more attractive to ento-
mopathogenic nematodes, applications of elicitors for induced defense could be tailored

Figure 3. Effect of distance and damage treatment on H. amazonensis response. Bars and error bars
denote mean preference and standard error respectively. ** indicates significance at P < 0.01.
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for plant health status. Mechanically damaged or physiologically stressed plants could
benefit from methyl jasmonate treatment to enhance biological control of root herbivores.

Distance of release also affects recruitment of entomopathogenic nematodes below-
ground. Interestingly, nematodes released farther away from elicitor treated seedlings
responded in greater numbers. While this may seem counterintuitive, and that greater
response is expected closer to the plant, it may be that different signals are at play.
Maize is known to use simple rapidly diffusing signals to communicate in the rhizosphere
(Hiltpold & Turlings, 2008). Additionally, the media in which the nematodes and plants
are interacting may act as a source or sink of organic volatiles (Penuelas et al., 2014).
Closer to the plant, the number and variety of volatiles released by the plant is likely
higher; diffusion and adsorption rates of many plant volatiles are variable and higher con-
centrations of volatiles in specific blends may to be present closer in to the plant (Hiltpold
& Turlings, 2008). Conversely, the number of volatiles permeating and traveling through
the pore space up to 60 cm is likely to be much lower and limited to smaller, more easily
diffusible volatiles (Hiltpold & Turlings, 2008). These results could suggest that nematodes
are responding to specific cues at distance and, in the presence of additional components
closer to the plant, orientation is complicated by the presence of additional compounds.

The variable effect of distance on nematode recruitment presents opportunities for
further exploration of the basic factors affecting attraction to volatile signals belowground.
Soil texture and composition, for example, are likely to influence diffusion of volatiles and
recruitment of entomopathogenic nematodes belowground. In sand, our results suggest
that exogenous applications of entomopathogenic nematodes for biological control can
be made some distance away from the target area and still have an effect. This long-dis-
tance travel of nematodes in response to elicitor treated corn seedlings presents a novel
strategy for augmentation biological control of subterranean root herbivores; entomo-
pathogenic nematodes can be applied in a non-specific manner then called in to areas
of herbivory through targeted application of plant defense elicitors. While this strategy
remains to be tested in the field, elicitor induced defense could hold promise for enhancing
biological control in the belowground environment.

Figure 4. Entomopathogenic nematode H. amazonensis infective juvenile response to methyl jasmo-
nate (MeJA) versus methyl salicylate (MeSA) treated corn seedlings. Bars and error bars denote mean
preference and standard error respectively. * indicates significance at P<0.05.
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