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Abstract
Articaine (ATC) is one of the most widely used local anesthetics in dentistry. Despite its safety, local toxicity has been reported. This
study aimed to develop an ATC-2- hydroxypropyl-β-cyclodextrin inclusion complex (ATCHPβCD) and to assess its toxicity in vitro.
The inclusion complex was performed by solubilization, followed by a fluorimetric and job plot assay to determine the complex
stoichiometry. Scanning electron microscopy, DOSY- 1 H-NMR, differential scanning calorimetry (DSC), and sustained release
kinetics were used to confirm the inclusion complex formation. In vitro cytotoxicity was analyzed by MTT assay and immunofluo-
rescence in HGF cells. Fluorimetric and job plot assay determined the inclusion complex stoichiometry (ATC:HPβCD= 1:1) and
complex formation time (400 min), as indicated by a strong host/guest interaction (Ka = 117.8M − 1), complexed fraction (f = 41.4%),
and different ATC and ATC HPβCD melting points (172 °C e 235 °C, respectively). The mean of cell viability was 31.87% and
63.17% for 20-mMATC and 20-mMATCHPβCD, respectively. Moreover, remarkable cell toxicity was observed with free ATC by
immunofluorescence. These results indicate the ATC HPβCD complex could be used to improve the safety of ATC. Further research
are needed to establish the anesthetic safety and effectiveness in vivo .
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Introduction

ATC has been pointed out as one of the most potent and less
toxic local anesthetic in dentistry (Pellicer-Chover et al. 2013;
Kambalimath et al. 2013; Tortamano et al. 2013). However,

despite its high anesthetic success rate, there are reports of
increased risk of paresthesia, changes in sensitivity, and tran-
sient postoperative pain have been related (Malamed et al.
2001; Garisto et al. 2010; Moore and Haas 2010; Pogrel
2012; Kämmerer et al. 2013). In fact, an analysis of reports
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to the FDA Adverse Event Reporting System showed the
articaine as one of the two local anesthetics that generates a
signal of paresthesia, especially in dentistry (Piccinni et al.
2015). This adverse effect has been attributed to the local
toxicity caused by the high concentration of ATC on the an-
esthetic solution (Haas and Lennon 1995; Haas 2006).

In that way, studies in recent years using cyclodextrins
(CDs) as cell carriers and solubilizers of local anesthetics have
been carried out to improve the pharmacological features of
these drugs (Prado et al. 2017) and to reduce this side effect
(Araújo et al. 2005; de Paula et al. 2010a). CDs are cyclic
oligosaccharides of glucopyranose units (6, 7, 8 for α, β,
and γ, respectively) linked by α (1, 4) linkages. Although
the entire CD molecule is water-soluble, these units form a
truncated cone with a hydrophobic (nonpolar) internal cavity
allowing the binding of the hydrophobic drug radicals com-
patible with the cavity size (6.0–6.5 Å) and keeping a hydro-
philic outer surface (Loftsson and Duchêne 2007). The 2-
hydroxypropyl-β-cyclodextrin (HPβCD), a synthetic βCD,
has received special attention because of its safety, even in
parenteral use, since it does not permeate the cell membrane,
making it suitable for several administration routes. It has a
much higher aqueous solubility (> 600 mg/mL) that differs
from the original βCD (18.5 mg/mL). HPβCD has been ap-
proved in several markets and do not cause immune response
in mammals. Moreover, because of its cavity size, it is appro-
priate for drug molecules with aromatic rings (Davis and
Brewster 2004; Loftsson and Duchêne 2007).

Thus, the objective of this study was to perform the char-
acterization of the ATC as a guest molecule into the host
cavity of HPβCD and evaluate the cytotoxicity in vitro of this
novel inclusion complex.

Methods

Preparation of the solid ATCHPβCD

The inclusion complex was prepared as described before
(Moraes et al. 2007a; Araújo et al. 2008). Briefly, equimo-
lar amounts of ATC HCl (MW = 320.84 g/mol) (DFL
Industria e Comércio S.A., Rio de Janeiro, Brazil) and
HPβCD (MW = 1400 g/mol) (Kleptose HP®, Roquette
Serv. Tech. Lab. Lestrem, Cedex, France), in a 1:1 M ratio,
were dissolved in ultrapure water (Milli-Q® Direct 8,
Merck-Millipore, Germany) at room temperature (25 ±
1 °C) for 24 h by continuous stirring to achieve complete
solubilization. The solution was freeze-dried (Lyo
Chamber Guard Christ LCG, Alfa 2–4 LD Plus,
Germany) for 72 h and stored at − 20 °C until further
use. Physical mixtures were obtained by mixing ATC
and HPβCD powders, at the same molar ratio.

Fluorimetric absorption and stoichiometry
determination

The interaction between ATC and HPβCD was followed at
272 nm (maximum ATC excitation UV wavelength) using a
fluorimeter (Fluorimeter Hitachi F-4500, Japan). The com-
plexation stoichiometry was determined from equimolar solu-
tions of the samples, with ATC spectra recorded in the
presence/absence of increasing HPβCD concentrations
(ATC:HPβCD molar ratios of 1:0, 1:1, 1:10, 1:20, 1:30,
1:40, 1:50, 1:75, and 1:100) (Sosnowska 1997). Using the
job plot analysis (Shafi and Shihry 2009; Braga et al. 2016),
ATC spectra were recorded for different ATC:HPβCD molar
ratios, remaining the total concentration (M) constant
(M = [ATC]total + [HPβCD]total = 2 μM). As the experiment
in the fluorimeter requires UV absorbance solutions between
0.1 and 0.2, low concentrations of the samples were used. All
experiments were performed in 5-mM HEPES buffer, at
pH 7.4 and 25 ± 2 °C.

The physicochemical parameter analyzed was the maxi-
mum fluorescence emission (λ) in the absence (λ0) and pres-
ence (λ) of HPβCD. Data analysis was performed by con-
structing a plot ofΔλ vs. r, according to the following formu-
las:

Δλ ¼ λ−λ0 ð1Þ

r ¼ ATC½ �
ATC½ �total þ HPβCD½ �total

� � ð2Þ

For a given value of r, the concentration of the complex
ATC:HPβCD will reach a maximum corresponding to the
point which the derivative d[ATC: HPβCD]/dr = 0. The max-
imum value for this parameter occurs at r = 0.5 which indi-
cates a 1:1 stoichiometry. Changes in the fluorimetric shift will
be proportional to the complex concentration and it is possible
to plot these changes against r (Loukas et al. 1998).

NMR analyses

ATC, HPβCD, and ATCHPβCD samples were diluted in D2O,
and 600 μL aliquots were transferred to 5-mm tubes for spec-
trum acquisition. One and two dimensional 1H-NMR spectra
were determined at 25 °C on Varian INOVA 500 spectrometer
(11.75 T frequency) and 499.73 MHz (digital resolution of
measurements of 0.39 Hz/point), at the Brazilian
Synchrotron Light Laboratory (LNBio, Campinas, Brazil).
The residual water peak (4.8 ppm) was used as an internal
reference. In all experiments, the suppression of residual water
was made by the pre-saturation technique. Data were proc-
essed using the nmrPIPE/nmrVIEW program (ACD/Labs,
Toronto, Canada).

The diffusion experiments (DOSY) were conducted to
ATC (5 mM), HPβCD (5 mM), and 1:1 (ATCHPβCD) at
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25 °C. The sequence used was the Dbppste. The total duration
of the gradient pulse was 2 ms, the standby time of diffusion
was 0.05 s, and the minimum gradient force was 0.3 G/cm
(Loukas et al. 1998; Laverde t al. 2002; Braga et al. 2016). For
all experiments, 30 spectra (64 transients each) were collected
with gradient pulses with amplitudes ranging from 0.68 ×
10−3 to 3.4 × 10−3T/cm, in which were observed an approxi-
mately 100% decay in intensity of the resonance. This
phenomenom was found in the biggest gradient amplitude.

The fraction of complexed drug ( f ) was determined as
described by the following equation (Braga et al. 2016):

f ¼ DATC−DComplex

DATC−DHPβCD
ð3Þ

DATC = diffusion coefficient of free ATC; DComplex =
ATCHPβCD inclusion complex diffusion coefficient; and
DHPβCD = diffusion coefficient of free HPβCD.

The affinity constant was calculated from the last equation
deduced from the equilibrium constant for the 1:1 stoichiom-
etry ATC: HPβCD as follows (Arantes et al. 2009):

Ka ¼ f

1− fð Þ
�
HPβCD½ �− f ATC½ �

ð4Þ

The f is the ATC complexed fraction, [ATC] = initial
ATC concentration (M); [HPβCD] = initial HPβCD con-
centration (M).

Differential scanning calorimetry (DSC)

DSC curves were obtained with a DSC-Q100 (TA Instruments
Waters, USA), using 50 mL/min nitrogen rate flow and
15 °C/min heating rate over a range of 0–300 °C. Five-
milligram samples (ATC, HPβCD and 1:1 ATCHPβCD) were
placed in aluminum pans. The temperature was calibrated
with indium element, and an empty pan was used as reference.

Sustained release kinetics and accelerated stability
assessment

In vitro release experiments were carried out using a two-
compartment system, with a cellulose membrane
(Spectrapore, MWCO 1000 Da) to separate the donor (1-mL
ATC or ATCHPβCD sample) and the acceptor (100 mL of ul-
trapure water) compartments, under continuous stirring.
Aliquots were withdrawn from the acceptor compartment at
regular intervals, and ATC concentration was determined by
HPLC according to a previously validated method (Franz-
Montan et al. 2015). Furthermore, three samples (10 mg each)
of ATCHPβCD were submitted for 6 months to challenge con-
ditions (40 °C ± 2 °C and HR = 75% ± 5%) in a climatic
chamber (Tecnal, TE-4003 – Brazil) to achieve the compound

stability. The release data were evaluated using the zero order,
first order, Higuchi, and Korsmeyer-Peppas models (Ramteke
et al. 2014).

Scanning electron microscopy (SEM)

Lyophilized samples of ATCHPβCD, ATC, HPβCD, and their
physical mixture were fixed on aluminum stubs with double-
sided carbon tape. The samples were metallized with gold
under vacuum for 120 s. Images were analyzed using a scan-
ning microscope (JSM 5800LV, JEOL, Japan) in order to ob-
serve possible structural changes on the ATC and HPβCD
crystals after complexation.

Cytotoxicity by MTT reduction
and immunofluorescent assay

Cell culture process

Spontaneously immortalized human gingival fibroblast
(HGF) cells were maintained in a monolayer culture in 95%
air and 5% CO2 at 37 °C in DMEM supplemented with 10%
fetal bovine serum, 1% penicillin/streptomycin, and 3-μg/mL
amphotericin B (Fungizone® GIBCO, USA).

Cell proliferation and function assay (Vybrant® MTT
proliferation assay)

The MTT Cell Proliferation Assay kit (Molecular Probes Life
Technologies, USA) was used and adapted to a previously
described method (Mosmann 1983). Briefly, 2 × 104 cells/
well were seeded in a 96-well plate with 200 μL of DMEM
culture medium (Vitrocell Embriolife, Brazil) supplemented
with 10% FBS. After 48 h, HGF cells were exposed to differ-
ent ATC and ATCHPβCD concentrations for 45 min. Then, the
supernatant was removed and 200-μL DMEM medium con-
taining MTT 0.3 mg/mL was added in each well. Cells were
incubated for 3 h in 95% air and 5% CO2 at 37 °C, protected
from light. The supernatant was removed and cells were gent-
ly washed twice with PBS pH 7.4, and 200 μL of absolute
ethanol were added to each well. Finally, absorbance was
measured at 570 nm in a microspectrophotometer (ASYS
UVM340; Biochrome, England).

Immunofluorescence cell morphology assay

The double immunofluorescence staining assay was per-
formed according to the manufacturer. Briefly, 5 × 102 HGF
cells were grown on previously poly-L-lysine-treated cover-
slips, fixed with 4% formaldehyde and permeabilized with
0.2% Triton X-100. F-actin filaments were labeled with
Alexa Fluor® 488 phalloidin (ThermoFisher Scientific,
Oregon, USA), and nuclei were stained with Hoechst 33342
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(ThermoFisher Scientific). Then, coverslips were mounted on
slides using Entellan® new reagent (Sigma-Aldrich, USA).
The multiple-exposure image was acquired on a Leica DMR
microscope equipped with an epifluorescence camera
DFC345FX (Leica, Germany) at × 20 with a fluorescence
excitation (Ex) and emission (Em) maxima of 495 nm/
518 nm. DMEM was used as cell positive control with no
effect on cellular morphology and Triton X-100 as a negative
control since it causes lysis on cell membrane.

Statistical analyses

Data were tested for normal distribution by Shapiro-Wilks test
and Levene was used to test the equivalency of variances.
Analyses of variance (ANOVA) followed by Tukey test (post
hoc analysis) were applied for cell viability assay (MTT).
Significance level was set at 1% (α = 0.01). All analyzes were
performed using the Biostat® 5.0 (Mamirauá Institute, PA,
Brazil) and GraphPad Prism 6.0 (GraphPad Software, Inc.,
La Jolla, CA, USA) software.

Results

ATC fluorimetric absorption properties
and complexation

The variation of fluorescence intensity was proportional to the
concentration of the complex and could be plotted against r.
Even though the molar quantity of HPβCD increased from
one to 100, all of the curves showed a similar distribution as
1:1 (Fig. 1). As the total molar concentrations of ATC and
HPβCD were equal (1 μM), the r-value obtained was 0.5, as

seen on Fig. 2a, which indicates a complexation molar ratio
ATC:HPβCD= 1:1. When plotted the area under the curve
(AUC) of the 1:1 complex over 24 h revealed an equilibration
time of 400 min at the plateau. The kinetics of complex for-
mation is directly related to the hydrophobicity of the guest
molecule to be incorporated, and there was no increase in the
absorbance after 400 min (Fig. 2b).

NMR experiments

Table 1 summarizes the ATC shift variation. The great
variation can be observed for H7, H8, and H9. The con-
firmation of the complex was done through experiments
of DOSY. Figure 3 shows the 1H-NMR spectra of the
ATC and HPβCD molecule, observing a right displace-
ment of the curve.

Diffusion measures

Once the supramolecular complexation characterization was
performed (analysis via complexation stoichiometry and prob-
able ATCHPβCD structure), diffusion experiments were per-
formed in order to measure the ATC complexed fraction via
NMR, as well as association constant (Ka) between ATC and
HPβCD. These values, carried out from Eqs. 1–4, are shown
on Table 2.

As shown on Table 2, the diffusion of the anesthetic mol-
ecule in solution (DATC) is greater than the HPβCD (DHPβCD)
due to the difference in molecular weight of both compounds,
indicating that the mobility of these molecules in solution are
different. From Eq. 3 and 4, the values of the complexed
fraction (f = 41.41%) and the affinity constant (Ka =
117.8 M−1) were obtained, respectively.

Fig. 1 Fluorescence emission
spectra of the ATCHPβCD at 1:1 to
1:100 (ATC:HPβCD)
concentration
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Differential scanning Calorimetry

Thermograms of plain ATC and ATCHPβCD inclusion complex
are shown in Fig. 4. The lack of ATC peak on melting point
(172–173 °C) on the curve when complexed with HPβCD is a
strong evidence of the new inclusion compound formation
(Yilmaz et al. 1995; Novak et al. 1998; Meier et al. 2001).

Sustained release kinetics and accelerated stability

The inclusion of ATC in the HPβCD cavity reduced the
in vitro release of ATC, as shown in Fig. 5. After 240 min,
the maximum release percentage was 84.5 ± 3.3% (ATC at
0 months), 72.5 ± 1.1% (ATCHPβCD at 0 months), and 76.9
± 1.7% (ATCHPβCD at 6 months). At the end releasing point,
there was a significant difference between ATC and the com-
plex formulations (p < 0.05, ANOVA-Tukey). No difference
was observed between ATCHPβCD 0 months and ATCHPβCD

6 months. The in vitro drug release profile was applied in

different mathematical models used for drug delivery. The
Higuchi model exhibited the highest correlation coefficient
(r2) for the different formulations (Table 3). This suitable mod-
el revealed the release of ATC from the formulations, which
implies the release of drug from the complex as a process that
depends of the square root of time and that diffusion may be
controlled (Fig. 5). The constant rate was 8.4240 and 7.6142
for ATC and ATCHPβCD 0 months, respectively. These values
were significantly different (p < 0.05, ANOVA-Tukey).

Scanning electron microscopy (SEM)

The crystals of HPβCD have hemispherical forms of tens of
microns, smooth surface, and aligned contours. The ATC
crystals are grouped with prismatic shapes and straight edges.
The ATCHPβCD has a completely different structure from
amorphous laminar appearance of hundreds of microns
(Fig. 6).

Cytotoxicity and immunofluorescent assay

The HGF cells’ metabolic activity was affected significantly
when treated with concentrations above 5 mM of plain ATC
and ATCHPβCD for 45 min, with a lower cytotoxicity tendency
in the complexed group. Although lower concentrations of
both ATC and ATCHPβCD showed similar cytotoxic profile,
20-mM plain ATCwas significantly (p < 0.01) more cytotoxic
in comparison with 20-mM ATCHPβCD. The mean (± SD) of
cell viability for 20-mM ATC and 20-mM ATCHPβCD was
31.87% (± 9.69) and 63.17% (± 13.34), respectively (Fig. 7).
The HPβCD did not affect the cell viability.

A loss of cytoplasm volume and apoptotic body formation
were found in HGF cells treated with 5-mM plain ATC, indi-
cating the cytotoxic effect of this local anesthetic. These

Fig. 2 a Job plot changes in fluorescence intensity at different
ATC:HPβCD molar ratios (r) for determination of the stoichiometry of
complexation as described in methods; 5-mM HEPES buffer, at pH 7.4
and 25 ± 2 °C (n = 3,mean ± SD). bKinetics of complexation of ATC and

HPβCD (n = 3, mean ± SD); each point represents the area under the
curve generated by fluorimetry in the formation of the equimolar complex
(1:1) in different time points during 24 h

Table 1 Chemical shift of ATC 1H and ATC in the inclusion complex
ATCHPβCD

H ATC (ppm) ATCHPβCD (ppm) Δδ (ppm)

2 1.008 0.902 0.106

3 1.713 1.605 0.108

5 2.116 2.020 0.096

6 3.033 2.919 0.114

7 3.100 2.985 0.115

8 3.871 3.771 0.100

9 4.255 4.139 0.116

10 7.516 7.418 0.098
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effects were observed with lower intensity on the groups treat-
ed with ATCHPβCD at the same ATC concentration (Fig. 8).

Discussion

Great advances in new inclusion complexes using HPβCD as a
delivery drug system of local anesthetics have been reported
(Fréville et al. 1996; Kopecký et al. 2004; Moraes et al. 2007a,
b; Franco de Lima et al. 2012; Cereda et al. 2012; Vermet et al.
2014; Serpe et al. 2014; Prado et al. 2017). To identify this
complexation, changes in the UVabsorption spectra have been
suggested (Misiuk and Zalewska 2011). The fluorescence re-
duction of ATC in the presence of HPβCD (Fig. 1) was very
similar in all the molar ratios assessed, reflecting the alteration
of the polarity of the environment or by the collision of the
fluorophore with inclusion complex. This altered fluorescence
was also observed with tetracaine, oxethazaine, and other guest
molecules. According to the job plot analysis (Fig. 2), in which
the maximum occurred at r = 0.5 (Eq. 2), the complexation
stoichiometry was confirmed to be 1:1. Similar results have
been obtained with ropivacaine, tetracaine, and oxethazaine
(Moraes et al. 2007a; Braga et al. 2016; Prado et al. 2017).

The NMR spectroscopy is one of the most informative
techniques for the study of CD complexes with several com-
pounds providing direct evidence of the formation complexes.
The presence of the guest molecule, when inserted into the
inner cavity of the CDs, produces changes in the chemical
environment of the internal hydrogens (H3 and H5), but not
in the external hydrogens (H1, H2 and H4) (Pinto et al. 2005).
In addition, the interaction of the host molecule with the CD
cavity can cause variation in chemical shift of hydrogens of
incorporated molecule in the cavity (Xiliang et al. 2003; Bratu
et al. 2005). Thus, NMR data led to the determination of the
ATC:HPβCD association constant (Ka = 117.8 M−1), which
indicates a stable affinity between these compounds. This out-
come is even higher than other amide local anesthetics when
complexed to HPβCD such as S-bupivacaine (Ka = 91 M−1),
S-ropivacaine (Ka = 55 M−1), and prilocaine (Ka = 41 M−1)
determined by this method (de Paula et al. 2010b; Cabeça
et al. 2011). Similarly, it has been shown a Ka = 198 M−1

Fig. 3 1H-NMR spectrum
(400 MHz, D2O/reference
residual H2O at 4.81 ppm) to
ATCHPβCD complex (a) and ATC
sample (b)

Fig. 4 Thermograms of ATC, HPβCD, and ATCHPβCD (1:1 M ratio)

Table 2 Diffusion coefficient (D) of ATC, HPβCD, and ATCHβCD

Samples D (10−10m2s−1) Complex molar fraction ( f )% Ka mol/l

ATC 4.69 ± 0.040 – –

HβCD 2.42 ± 0.011 – –

ATCHβCD 3.75 ± 0.022 41.41 117.8

Associated constant (Ka) and complexed fraction ( f ) of ATC on the
ATCHβCD complex
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between the oxethazaine and HPβCD (Prado et al. 2017).
Since Ka is directly related to the drug lipophilicity, high as-
sociation between these compounds was expected.

DSC is a common thermal technique used in research of
solid-state interactions between drugs and CDs (Giordano et al.
2001;Mura et al. 2003). The comparison of the thermal curves of
single compounds, their physical mixture, and the apparent in-
clusion complex provides insight about the interactions between
the components as consequence of the process used for the com-
plex preparation (Mura 2015). As seen with the inclusion com-
plex between ropivacaine-HPβCD and lidocaine-HPβCD, there
was the disappearance of the ATC melting peak when com-
plexed with HPβCD in the DSC curve (Araújo et al. 2008).
The increased temperature of decomposition observed in the
complex is a clear signal of the increased drug thermal stability
because of the ATC inclusion inside the HPβCD cavity (Yilmaz
et al. 1995; Novak et al. 1998; Meier et al. 2001).

The most widely used in vitro method to evaluate the release
of a drug is through a vertical diffusion cell, using a cellulose
permeable membrane by which the release of a drug is assessed
over time (Shen and Burgess 2012). As recommended before
for local anesthetics (Prado et al. 2017), free ATC showed a
release above 80%. However, samples of ATCHPβCD did not
achieve that percentage release after 4 h, and this phenomenon
could be explained by the high complexed fraction of ATC on

HPβCD (41.41%) and the strong and stable affinity of this
inclusion complex (Ka = 117.8 M−1). Moreover, it is possible
to observe that there was a decrease in the values of release
constants for the different formulations since the 6 months’
formulation showed a higher release constant than the newly
prepared complex, but still with a lower value than the non-
complex formulation (Table 3). Also, the in vitro drug release
profile was applied in different mathematical models and eval-
uated by correlation coefficient (r2) presented in Table 3. Since
the highest degree of correlation coefficient determines the suit-
able mathematical model that follows drug release kinetics, the
Higuchi model fits this point than other models. This finding
supports our results since this well-known model has become a
prominent kinetic equation in its own for controlled-release
formulations and as an important element in drug delivery sys-
tems development (Gouda et al. 2017), which implies that re-
lease of drug from the complex as a square root of a time-
dependent and diffusion-controlled process (Fig. 5).
Interestingly, the ATCHPβCD inclusion complex submitted to
challenge conditions for 6 months showed a similar releasing
curve as the original complex (0 months) indicating a good
compound stability. All these results suggest the complex as a
controlled drug releaser, modifying the drug permeation across
cell membrane and increasing the bioavailability of the original
molecule.

Fig. 5 Higuchi model kinetics for
articaine formulations release
(cumulative percent drug released
vs. square root of time). SQRT
indicates square root. ATC and
ATCHPβCDmeasured at 25 °C and
pH 7.4 (n = 3, mean ± SD)

Table 3 Correlation coefficients (r2) and constant values for the different mathematical models applied to the release of ATC

Mathematical models

Zero order First order Higuchi Korsmeyer-Peppas

Formulations k
(h−1)

r2 k
(10−3 h−1)

r2 k
(h-1/2)

r2 k
(h−1)

n r2

ATC 0 months 0.6108 0.9404 8.225 0.7949 8.4240 0.9851 1.1430 0.3363 0.9582

ATCHPβCD

0 months
0.4846 0.8659 6.891 0.6142 7.6142* 0.9826 0.8011 0.3187 0.8573

ATCHPβCD

6 months
0.5732 0.9533 7.112 0.9333 8.0122 0.9831 0.9082 0.3295 0.9648

*Statistical difference in relation to ATC 0 months, p < 0.05, ANOVA-Tukey

Naunyn-Schmiedeberg's Arch Pharmacol



SEM data (Fig. 6) provided evidences of ATC insertion
within the cyclodextrin’s hydrophobic cavity, since both dem-
onstrate the loss of ATC crystalline pattern in the complex but
not in the simple physical mixture of ATC and HPβCD.
Similar results were reported for the ropivacaine, tetracaine,
and oxethazaine in inclusion complex with HPβCD (Moraes
et al. 2007a; Braga et al. 2016; Prado et al. 2017).

On the other hand, the use of HGF cells to assess the
cytotoxicity of local anesthetics have been reported,
which reveal the HGF as a suitable model for this purpose
(Ferreira et al. 2016; Ferreira et al. 2017). The reduction
of systemic and/or local toxicity of other local anesthetics
has been reported through the inclusion complex with
HPβCD. For instance, the complexation of oxethazaine
with HPβCD reduced the cytotoxicity and improved the
analgesic effect in inflamed tissues, being these notable

results considering the instability of local anesthetics on
acid environment (Prado et al. 2017). Schawn cells were
exposed to complexed and plain bupivacaine and
ropivacaine for 24 h (Cereda et al. 2012). Although there
were no significant differences on the cytotoxicity effect
between these formulations, the authors did not consider
the releasing time of the complex and the half-life time of
the drugs for this assay. In our study, we considered a 45-
min time exposure, since it is the commercial ATC half-
life when administered with epinephrine 1:100000 or
1:200000 (Giannakopoulos et al. 2006). The ATCHPβCD

showed a less cytotoxic trend especially with high con-
centrations (> 5 mM) of ATC (Fig. 8), maybe because of
the observed delayed release and due to the high rate of
complexation that prevents direct contact of the active
substance (ATC) with the cells. In fact, drug delivery

Fig. 6 Scanning electron
microscopy of a natural HPβCD,
b natural ATC, c physical mixture
of ATC and HPβCD molar ratio
of 1:1, and dATCHPβCD inclusion
complex molar ratio 1:1.
Magnification × 1500, bar =
10 μm

Fig. 7 Viability of HGF cells after
treatment with articaine (ATC)
and ATC-2-hydroxypropyl-β-
cyclodextrin inclusion complex
(ATCHPβCD) for 45 min (n = 10,
mean ± SD). *Statistical differ-
ence between ATC treatments and
control (0 mM); #marks signifi-
cant difference between 20mM
ATC and 20-mM ATCHPβCD,
p < 0.01 ANOVA, and Tukey test
(post hoc)
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systems for local anesthetics act as reservoirs causing
slow release of drug, reduce plasma concentration,
prolonged the duration of nerve block, and prevent cell
toxicity (de Paula et al. 2010a). However, the benefit of
the ATCHPβCD inclusion complex on cell viability should
be further investigated in other cell types.

In conclusion, physicochemical characterization of the
ATCHPβCD inclusion complex showed a 1:1 (ATC: HPβCD)
steady stoichiometry complexation. Diffusion experiments
demonstrated a strong and stable affinity between these mol-
ecules. The ATCHPβCD inclusion complex showed a limited
cytotoxic effect in vitro. These results are important for a
better understanding of the pharmacological properties of
ATCHPβCD inclusion complex as a potential and novel alter-
native for local anesthesia in dental and medical practice, due
to the lower cytotoxicity profile. Further research is needed in
order to determine the anesthetic safety and effectiveness of
this novel inclusion complex.
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