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A B S T R A C T

In formulations of nanostructured lipid carriers, lipid solid dispersions and self-emulsifying drug delivery sys-
tems, it is common that a solid or semi-solid lipid excipient is mixed with a liquid solvent or liquid lipid. Even
when the excipients are visually miscible upon melting, they might have microscopic non-homogeneities which
could lead to instability over time and future phase separation. Raman mapping associated with chemometric
methods can be useful to evaluate spatial distribution of compounds, however it has not been extensively applied
to the formulations mentioned above. The aim of this work was to compare the outcomes of three different
chemometric methods – principal components analysis (PCA), multivariate curve resolution with alternating
least squares (MCR-ALS) and independent components analysis (ICA) – to study two systems of very different
degrees of microscopic miscibility: cetyl palmitate+ Transcutol© (heterogeneous) and polyethylene glycol 6000
(PEG 6000)+Tween 80© (homogeneous). These two samples were chosen due to large differences in spatial
distribution of the compounds over the pixels which could require different approaches for data treatment. The
three methods were compared regarding recovered concentrations (or scores), signals (or loadings) and the need
for matrix augmentation to obtain reliable results. Results showed that PCA loadings were the mathematical
differences of the spectra of pure compounds for both samples, and therefore only ‘contrast images’ could be
generated. MCR and ICA provided signals that could be related to the chemical components, however MCR
presented rotational ambiguities even for the very heterogeneous sample, a situation in which ICA performed
better as a blind search method. For the homogeneous sample, both methods showed rank deficiency and
therefore the use of a matrix augmentation was necessary. ICA and PCA allowed identifying physical mod-
ifications in the homogeneous semi-solid PEG 6000/Tween 80® sample over the time, probably due to the
folding/unfolding of the crystalline chains of PEG 6000. Therefore, this work discusses the ability of the three
chemometrics methods to extract information from Raman spectra in order to characterize the chemical, spatial
and even physical aspects of semi-solid pharmaceutical formulations, which could be of much use for stability
studies of different drug delivery systems.

1. Introduction

Modern pharmaceutical development has to deal with the fact that
many of the recently discovered molecules with pharmacological ac-
tivities are hydrophobic and therefore present low water solubility,
which is responsible for their poor and erratic bioavailability. For these
compounds to become commercially marketed products, special for-
mulation strategies need to be developed such as solid-dispersions using

hydrophilic carriers (Serajuddin, 1999), lipid-based formulations (LBF)
(Pouton and Porter, 2008; Williams et al., 2013, Feeney et al., 2016),
solid-lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC),
(Müller et al., 2000; Müller et al., 2011), to mention just a few.

In many of these formulations a solid or semi-solid excipient is
melted and mixed with a liquid solvent, surfactant or co-surfactant in
one step of the process. The manufacturing processes that use meltable
excipients are nowadays preferred over solvent-based processes, due to
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the savings of time and costs, besides being ecologically more attrac-
tive. In the case of SLN and NLC formulations, the solid/semi-solid
excipient is hydrophobic while in case of solid dispersions and self-
emulsifying drug-delivery systems (SEDDS) formulations it is normally
hydrophilic. The final mixture can be either solid, semi-solid or liquid
depending on the relative amounts of the excipients. Visual inspection
of miscibility during the mixing of the molten semi-solid and liquid
excipients is normally carried out. However this procedure might not be
sufficient to assure real miscibility and stability. Breitkreitz et al.
showed that SEEDS formulations of atorvastatin calcium prepared with
Gelucire© 44/14 and different solvents/co-surfactants that were vi-
sually homogeneous, presented very different miscibility behavior by
Raman mapping (Breitkreitz et al., 2013). Even if excipients are mis-
cible upon melting, after cooling they could present micro-hetero-
geneities. Such inhomogeneities (as agglomerates or channels of the
liquid excipient inside the waxy solid matrix) could lead to instability
over time and eventually phase separation. In this sense, it is important
to detect this problem in the early steps of pharmaceutical development
to avoid waste of time, work and resources.

Cetyl palmitate (hexadecyl hexadecanoate, CP) is one of most
commonly used solid lipids for the preparation of NLC formulations
(Anantachaisilp et al., 2010; Chantaburanan et al., 2017). In this kind of
formulation, the mixing of the solid and liquid excipient leads to en-
hanced solubility of the active principle ingredient (API) by formation
of an imperfect matrix structure (Saupe et al., 2006). The NLC is the
second generation of solid lipid nanoparticles. In comparison to SLN,
the improved drug upload capacity and physicochemical stability of
NLC has been attributed to the incorporation of a liquid component into
the inner part of the waxy solid matrix (Beloqui et al., 2016).

While many papers describe the use of differential scanning ca-
lorimetry (DSC), X-ray powder diffraction (XRD), atomic force micro-
scopy and zeta potential measures (Saupe et al., 2006; Carbone et al.,
2014; Karn-Orachai et al., 2014), only a few have used Raman imaging
to evaluate the miscibility of excipients (Anantachaisilp et al., 2010;
Karn-orachai et al., 2016; Suto et al., 2016). Recently we showed the
miscibility of CP-based NLCs with Dhaykol 6040® and Capryol® using
Raman mapping and classical least squares (CLS) where it was possible
to observe the advantages of the use of multivariate methods (da Silva
et al., 2017). However, CLS only works well in very limited situations
(when Lambert-Beer’s law is strictly followed and there are no inter-
actions among the components). Therefore, exploring other chemo-
metric tools should lead to a deeper understanding of this type of for-
mulations.

Polyethylene glycol (PEG) is a hydrophilic polymer largely used in
pharmaceutical development to enhance the solubility of poorly water-
soluble drugs (Gullapalli and Mazzitelli, 2015; Van Duong and Van den
Mooter, 2016). Depending on its molecular weight, PEG can vary from
a clear liquid (200–600 g/mol) to a white solid wax (> 1000 g/mol).
Above 20,000 g/mol they are called polyethylene oxides (PEOs). PEG
has a safety profile for human use and its availability at low cost makes
it a very interesting excipient for pharmaceutical development. Al-
though this polymer enhances the wettability of poorly water-soluble
drugs, it is not capable of preventing precipitation upon dilution in
aqueous medium by itself and, for this reason, it is common to associate
it with another component, normally a lipid or a surfactant. Solid
polyethylene glycol has a semi-crystalline structure, forming lamellae
with chains either fully extended or folded – once or twice – depending
on the crystallization conditions (Verheyen et al., 2002). Unga et al.
studied binary mixtures of PEG with twelve liquid lipids to understand
their influence on PEG crystallization by DSC and XRD. According to
their results, the properties of incorporated lipids govern the crystal-
lization behavior of PEG, changing the ratio of folded/unfolded chains
of this excipient (Unga et al., 2010).

PEG is frequently associated with polysorbate 80 (Tween®), a non-
ionic surfactant. It is suggested that when PEG and Tween 80® are
mixed, the surfactant is miscible only in the amorphous part of PEG

(Morris et al., 1992). Also, it has been described that the miscibility of
the two compounds increases with the molecular weight of PEG
(Tejwani et al., 2000). The PEG/Tween 80© system has demonstrated
increased bioavailability for many drugs (Dannenfelser et al., 2004,
Joshi et al., 2004) generating stable formulations. Nevertheless, a solid
dispersion of saquinavir mesylate using PEG 4000 and Tween 80® was
reported to be unstable over time. The authors attributed this instability
to modifications in the degree of crystalline order/disorder of the car-
rier over the time (Caon et al., 2013).

Raman mapping generates chemical and spatial information, and it
has been used for the evaluation of several different delivery systems
(Gordon and McGoverin 2011; Smith et al., 2015). However, very few
studies focus on the use of this technique for the development of semi-
solid formulations for oral delivery (Breitkreitz et al., 2013; Sacré et al.,
2015). The use of chemometric methods associated with this technique
ensures that relevant information is extracted from the samples. Che-
mometric methods that do not require a calibration sample set in order
to extract information are of particular interest, such as principal
components analysis (PCA) and curve resolution methods, for example
MCR-ALS (multivariate curve resolution with alternating least squares)
and independent components analysis (ICA). While the first two are
more common in literature, ICA is a recent method, not widely
exploited in pharmaceutical development up to the moment. Using
“ICA and pharmaceutical” as topics in Web of Science, 32 publications
were found and only 2 using Raman imaging (Boiret et al., 2014; Lin
et al., 2012). To the best of our knowledge, this is the first time that ICA
is used on semi-solid formulations. It is important to highlight that even
though these methods do not require a calibration sample set, data from
a very homogeneous sample can present rank deficiency issues due to
the lack of variability in the pixels (Lohumi et al., 2017; Tauler et al.,
1995), therefore it becomes necessary to include samples with different
concentration of the components, generating what is called an aug-
mented matrix.

The aim of this work is to compare the outcomes of three different
chemometric methods: principal components analysis (PCA), multi-
variate curve resolution with alternating least squares (MCR-ALS) and
independent components analysis (ICA) to study two systems of very
different degrees of microscopic miscibility: cetyl
palmitate+Transcutol© (heterogeneous) and PEG 6000+Tween 80©

(homogeneous). We discuss the ability of these chemometric methods
to describe the miscibility and physical stability of two very different
semi-solid formulations, based on Raman mapping data. It is described
how the degree of heterogeneity (pixel-to-pixel variability) affects each
method and their ability to detect physical changes that could lead to
instabilities even in very homogeneous semi-solid formulations. A brief
description of each method is provided in the Section 2.4.

2. Materials and methods

2.1. Materials

Cetyl Palmitate was purchased by Dhaymers Química Fina (Brazil),
Transcutol® was kindly donated by Gattefossé (France), polyethylene
glycol 6000 and Tween 80® were purchased from Synth (Brazil). The
structure of each excipient is shown in Fig. S1.

2.2. Sample preparation and Raman mapping

The samples were prepared by heating 10 °C above the melting
point of CP (54° C) and PEG 6000 (58–63 °C) and the liquid excipient
(Transcutol© or Tween 80©) was added under stirring until a visually
homogeneous mixture was obtained. The sample CP/Transcutol® was
prepared to have the bulk concentration of 70% w/w of CP and 30% w/
w of Transcutol®. Nine samples of PEG 6000 and Tween 80® were
prepared, varying the proportions from 10 to 90% (w/w) (Table S1).
The samples were cooled to room temperature in an aluminum cell and
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an area of 2.0× 2.0 mm (4mm2) was mapped using a Raman Station
400 (Perkin Elmer, CT, USA).

The exposure time was 3 s/pixel and each spectrum was the average
of 2 exposures. The step size was 50 μm and the spectral range
600–3200 cm−1 with a resolution of 4 cm−1. Each sample generated a
cube of data with dimensions of 40×40× 651, where 40 was the
number of pixels at x and y axis and 651 the number of spectral vari-
ables. Raman images of all 9 samples of PEG 6000/Tween 80® were
obtained at the initial time and also after 6 and 12months.

2.3. Data processing

Spikes from Raman spectra were excluded using an algorithm de-
veloped by Sabin and co-workers (Sabin et al., 2012). The spectral
range of 1804–724 cm−1 was selected for CP/Transcutol® and
1724–844 cm−1 for PEG 6000/Tween 80®. Dead pixels were replaced
by median of neighbors (Vidal and Amigo, 2012). The data cube was
unfolded to a 2D (NM× λ) matrix, where M is number of pixels at x
axis, N is the number of pixels at y axis and λ is the number of spectral
variables. The spectra were smoothed using Savitzky-Golay method
(width of 5, second polynomial order), baseline correction by asym-
metric least squares (AsLS) and normalization by unit vector. For PCA,
the data were mean centered.

2.4. Chemometric analysis

To compare the outcomes of the three chemometric methods, the
data treatment was divided into three situations. Situation 1) the
models were built on the matrix obtained only by unfolding the cube,
without any other information. The goal was to simulate a completely
blind search. Situation 2) the reference pure spectra were added to the
same matrix (Fig. S2a). These two cases simulate situations when only
one sample is available for analysis, and represent the most practical
scenario for pharmaceutical development. Situation 3) this one was
carried out only for PEG/Tween samples. A model for PEG 6000 and
Tween 80® using the 9 samples with different concentrations and the
reference pure spectra (augmented matrix) was built (Fig. S2b). Also, to
analyze modifications over time, all 9 samples from the initial time, as
well as 6 and 12months samples were organized into a single aug-
mented matrix (Fig. S2c). The data were analyzed by principal com-
ponents analysis (PCA), multivariate curve resolution with alternating
least squares (MCR-ALS) and independent components analysis (ICA).
All models were built using Matlab version 8.3 (Mathworks Inc., Natick
MA, USA). PCA data analyses were performed using the PLS_toolbox®

version 7.3.1 (Eigenvector Research Inc., Wenatchee WA, USA). For
MCR and ICA the MCR analyses it was used the MCR_toolbox version 2
and JADE algorithm (Rutledge and Bouveresse, 2013, 2015), respec-
tively.

PCA is an exploratory method widely used in hyperspectral imaging
(Amigo et al., 2008; Gendrin et al.; 2008, Kandpal et al., 2015). In this
method, the unfolded X matrix (matrix containing the spectra) is de-
composed according to Eq. (1):

= +X TP ET (1)

where T is the scores matrix (MN×F), P is the loadings matrix (λ×F)
and E is the residual matrix (MN× λ) for F principal components (PCs).
M and N represent the spatial dimensions of the cube. The objective of
PCA is to reduce the dimensionality of data by finding linear combi-
nations of the original variables, where correlated information is
gathered in the same component (Bro and Smilde, 2014). The scores in
each PC were re-folded to have the original spatial organization and
one image was built for each significant PC.

In PCA, since the loadings are combinations of the original vari-
ables, their interpretation is not straightforward and they may lack
physical or chemical meaning. On the other hand, curve resolution al-
gorithms can provide chemically meaningful solutions, and therefore a

more straightforward interpretation of the results is possible. MCR-ALS
is the most popular algorithm used for multivariate curve resolution,
and it is based on Eq. (2):

= +X CS ET (2)

where C is the concentration profile (MN×G), S the spectral profile
(λ×G) and E is residual matrix (MN× λ) for G components. C and S
are iteratively calculated until convergence is achieved (de Juan et al.,
2014). In this work, the number of components was chosen based on
singular value decomposition (SVD). This method shows the dis-
advantages of ambiguities, both rotational and intensity, for the esti-
mated C and S matrices. Some constraints can be used to overcome
these ambiguities, such as non-negativity of spectra and concentrations
profiles, and both were used in this work. For a fair comparison with
ICA, the SIMPLISMA (SIMPLe-to-use Interactive Self-modeling Mixture
Analysis) algorithm was employed to provide initial estimates of the
pure spectra in Situation 1.

ICA is a method of Blind Source Separation (BSS) developed in the
field of signal processing in telecommunications (Jutten and Herault,
1991) to extract pure underlying signals of a mixed signals set ac-
cording to Eq. (3):

=X ASs (3)

where Ss is a matrix of independent source signals (k× λ) and A is a
matrix of mixing coefficients or proportions of the pure signals with
dimensions of (n× k), k is the number of independent components (ICs)
(Rutledge and Bouveresse, 2013, 2015). ICA assumes that the original
source signals and their proportions in the analyzed mixtures are un-
known, and it aims at extracting them by using the criterion of max-
imum independence among the source signals.

The source signals, or ICs, are analogous to PCA loadings and the
corresponding proportions (also called “mixing coefficients”) are ana-
logous to PCA scores. Source signals are assumed to have a specific
structure, which means that their intensity distribution is not random,
and therefore, does not give a Gaussian histogram. On the other hand,
because of the Central Limit Theorem, mixtures of non-Gaussian source
signals will tend to be more Gaussian. Therefore, ICA aims to find the
source signals by maximization of their non-Gaussianity (Mishra et al.,
2016; Stone, 2002; Wang et al., 2008). ICA is a more recent method and
it hasn’t been largely exploited in the pharmaceutical area yet. Two
criteria were used to choose the optimal number of ICs: correlation with
excipient spectra or ICA_by_blocks (Bouveresse et al., 2012).

3. Results and discussion

3.1. Raman spectra

Raman spectra of the two systems are shown in Fig. 1. Cetyl pal-
mitate presents main peaks at 1728, 1460, 1440, 1420, 1296, 1132,
1100, 1064, 1016, 924 and 892 cm−1. Transcutol® shows Raman peaks
on 1460, 1276, 1244, 1140, 1072, 888, 840 and 808 cm−1. Bands be-
tween 800 and 900 cm−1 refer mainly to eCH3 rocking. Peaks at 1016
and 1072 cm−1 refer to eCH3 bonds. Peaks around 1440–1450 re-
present mainly eCH2 bonds while the eC]O bond in esters is found as
a weak signal at 1728 cm−1 for CP. PEG 6000 exhibits peaks on 1480,
1448, 1396, 1364, 1280, 1236, 1144, 1124, 1064, 948, 932 and
860 cm−1, and Tween 80® has peaks on 1652, 1464, 1444, 1296, 1284,
1248, 1136, 1064, 1040 cm−1. Another band at 1064 cm−1, related to
eCH3 bonds, is found in CP, PEG 6000 and Tween 80® (Patnaik, 2004).

3.2. Cetyl palmitate and Transcutol®

Chemometric models were built without (Situation 1) and with
(Situation 2) the reference spectra. PCA did not show any significant
differences due to the huge heterogeneity of this sample, as shown by
the Scores plot (Fig. 2a) where a wide dispersion of values among the
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pixels is observed. Since the principal components are calculated as the
directions of maximum variability of the data set, which in this case are
the differences of concentration of excipients, the loadings are the
differences between the pure spectra. Fig. 2b compares the loadings in

the first PC (82.88% of variance) with the calculated difference be-
tween the pure spectra. As previously mentioned, PCA loadings refer to
mixed signals. So, they do not give information on the pure compounds
but provide a ‘contrast’ image instead. By re-folding PC1 scores, the

Fig. 1. Raman spectra of a) cetyl palmitate and Transcutol® and b) PEG 6000 and Tween 80®.

Fig. 2. a) Score plot of image pixels and reference spectra; b) Loadings on PC1 and the mathematical difference of the two reference spectra; c) contrast image of PCA
scores and d) histogram of the scores.
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chemical map (Fig. 2c) is obtained. It can be seen that Transcutol® was
accumulated in one part of image and revealed poor miscibility with
CP. When this matrix is refolded, the scores of reference spectra are the
first (CP) and last (Transcutol®) lines of the chemical image with the
highest and lowest scores values, which gives an intense red and blue
color for these lines.

However, even for this heterogeneous sample there are no pixels
with only pure excipient spectra, as can be seen in Fig. 2a. This was a
problem for MCR-ALS using SIMPLISMA, as shown in Fig. 3a. When the
model was built using only one sample spectra (Situation 1), the re-
covered spectral profile of Transcutol® presented mixed peaks of CP (see
for example 1430–1410, 1300–1290 and 1150–1050 cm−1). This is
called rotational ambiguity and to overcome this issue, the variability
of the matrix should be increased even more. The easiest way of doing
that is by adding the pure reference spectra (Situation 2, Fig. 3b). For
ICA, the presence of pure excipient spectra did not influence the re-
covery of the source signals (Fig. 3c and d), i.e, in both situations, ICA
recovered well CP and Transcutol® spectra without rotational ambi-
guity. Therefore ICA was found to be a good option as a blind search
method. BSS implies that any a priori information is used to build a
model. In other words, on the contrary of MCR-ALS which needs initial
estimates, ICA can be performed without them. One potential use of
ICA, thus, is in analysis of unknown composition of samples (Boiret
et al., 2014). Nevertheless, it should be pointed out that in the case of

MCR-ALS, if reference spectra had been used as initial estimates, the
rotational ambiguity problem should be minimized. Since this was not
an option for ICA, the comparison in this case would not have been
straightforward and therefore it was not discussed.

Chemical images generated by MCR-ALS and ICA, including the
reference pure excipient spectra were similar, and therefore Fig. 4
shows only the ICA images. The proportions were normalized using the
reference spectra as 0 and 100. For example, IC1 refers to cetyl pal-
mitate thus, pixels with pure spectra of this excipient have values of 100
and pixels with pure spectra of Transcutol® have values of 0 (complete
absence of CP). Also, the inverse was done for IC2: pixels of Transcutol®

have values of 100 and pixels of excipient CP have values of zero. Using
this normalization, proportions obtained from different formulations
have the same scale of variation. These normalized proportions are very
useful because they allow to compare samples with different excipients
and predict the more homogenous formulation amongst them. Fig. 4a
and b show CP and Transcutol® chemical images, respectively; and
Fig. 4c and d the corresponding histograms.

This sample was observed to be heterogeneous even at the initial
time by Raman mapping and chemometrics. The NLC formulation using
these excipients was prepared to encapsulate the tetracaine drug, using
Poloxamer as a surfactant and instabilities of particle size and poly-
dispersity were observed after 60 days, which finally resulted in phase
separation. This result highlights the power of this technique to foresee

Fig. 3. Spectral profiles (S) recovered for CP/Transcutol® sample by MCR-ALS: a) with and b) without pure excipient spectra. Source signals recovers by ICA: c) with
and d) without pure excipient spectra.
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stability issues during pharmaceutical development.

3.3. PEG 6000 and Tween 80®

3.3.1. Initial time results
PCA analysis showed that this sample is very homogeneous in the

whole concentration range. Without any reference spectra, the variance
captured by each Principal Component was very low, due to the lack of
a preferential direction in space. SVD indicated only one component for
MCR-ALS model and the recovered spectrum was the average spectrum
of the image. Similar results would be found if two components were
chosen. With ICA, the source signals were mixtures of the reference
spectra and did not refer to any of the excipients (Fig. S3). Therefore,
the use of alternatives that increase data variability is mandatory in this
case, and the simplest solution was augmenting the matrix with the
reference spectra, which were available in this case. This approach
provided a direction of preferential variability for PCA. Results of the
sample containing 30.0% (w/w) of Tween 80® and 70.0% of PEG 6000
are shown in Fig. 5 as an example. The scores plot of Fig. 5a shows that
the variability among the pixels was small along the first PC, a very
different situation than the one found for the heterogenous sample
(Fig. 2a). The scores of reference spectra are shown in green and blue in
Fig. 5a where it can be seen that all the image pixels are concentrated
between the scores of the two excipients. This implies that this sample
does not have any pixels with only one of excipients, and therefore the
two compounds are well mixed. Also, similarly to the heterogeneous
case, the first PC loadings refer to the difference between the two ex-
cipient spectra (Fig. 5b), therefore, once again, the scores map (Fig. 5c)
is a ‘contrast image. Due the homogeneity this sample, this chemical
map seems monochromatic, and reference excipient scores are the first
and last line of the image. The high homogeneity of this sample is
confirmed by its very narrow histogram shown in Fig. 5d.

The augmenting of the matrix just with the reference spectra al-
lowed to recover the spectral profile (MCR) and source signals (ICA), as
can be seen in Fig. 6a and b. The maps were very similar for the two
methods. Fig. 6c to f show chemical maps and histograms obtained by

ICA. Comparing with the heterogenous case (Fig. 4), the differences
between the two systems are evident, with histograms thinner and
lower dispersion of proportions values.

It is noteworthy that the scales of scores are different in each case:
PCA scores varied between −0.6 and 0.2, centered in zero (Fig. 5).
MCR-ALS gives the C matrix as a solution of Eq. (2) and varies between
0 and 1. In our data, these values were multiplied by 100 to give per-
centages. ICA proportions were normalized between 0 and 100 using
reference spectra as extreme values. It is important to highlight that
images of homogeneous/heterogeneous samples should be compared
using the same scale.

Then the approach of augmenting the matrix with samples of dif-
ferent concentrations was evaluated (Situation 3, Fig. S2b). Using 2
components in MCR-ALS and ICA (as suggested by SVD and correlation
with reference spectra, respectively), the recovered spectral profiles/
source signals were very similar to the ones obtained using only one
sample and the reference spectra (shown in Fig. 6a and b). These similar
results indicated that augmenting only with the reference spectra was
enough to create the necessary variability to solve the rank deficiency
problem. This is an important aspect for semi-solid formulations be-
cause, even in cases of heterogeneous samples (e.g. CP/Transcutol®), it
is possible that there are no ‘pure’ pixels. Nevertheless, the availability
of different concentrations in the case of PEG/Tween® system made it
possible to plot the predicted vs experimental concentrations, as shown
in Fig. S4 for MCR and ICA. Both presented good agreement of the
experimental average concentration with the extracted scores/propor-
tions. However, it can be seen that there is a deviation from linearity for
PEG 6000. The same result was obtained by PCA and MCR scores,
therefore it was not related to the chemometric method used. One
possible explanation for this is the physical aspect of samples: in one
extreme there are PEG 6000 and CP, solid excipients; in the other there
are Tween 80® and Transcutol®, liquid excipients, and in between there
are several semi-solid formulations, varying from hard to soft wax.
Therefore, the scattering can be very different all over the concentra-
tion range and cause small deviations from linearity. Indeed, the same
curvature was observed for the CP/Transcutol® sample – even though

Fig. 4. Chemical images obtained by ICA: a) CP and b) Transcutol®; histograms for c) CP and d) Transcutol®.
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there was a single sample in this case, the wide range of concentration
over the pixels made it possible to study the linearity.

3.3.2. Stability studies
The Raman images of the 9 mixtures kept at room temperature were

obtained in fresh samples and after 6months and 1 year, totalizing 27
data cubes. First, an ICA model was built for each time (initial,
6 months and 1 year) using a matrix augmented with reference spectra.
By the ICA-by-blocks method, the ideal number of ICs for the different
mixtures increased over the time, implying that new sources of varia-
tion were appearing in the data with time. Therefore, to describe the
ageing effects and the behavior of the samples over time, the spectra of
all 27 samples were organized into a single augmented matrix, and an
ICA model using 3ICs was built.

Fig. 7a to c show the source signals obtained. IC1 refers to PEG
6000, IC2 refers to Tween 80® and IC3 presents mixed signals of the two
excipients (Fig. 7c). Fig. 7d and e display the experimental concentra-
tions of each excipients vs the proportions of IC1 and 2 for the samples
of the initial time, 6months and 1 year. As can be seen, IC 1 and 2
signals can be straightforwardly assigned to the variations in the con-
centrations of PEG 6000 and Tween 80®, respectively. However, over
the time a broader variation among the samples over the time is ob-
served for PEG (Fig. 7d) compared to Tween 80® (Fig. 7e). IC3 in the
initial time was related to the concentration of PEG 6000 in the samples

(blue circles of Fig. 7f), however, this signal has changed over time (red
and green circles of Fig. 7f) until it lost the correlation with con-
centration after 1 year. This implies that modifications occurred in
these samples over time so that IC3 may be describing a physical effect:
modifications of PEG 6000, in the presence of Tween 80®. The presence
of a liquid compound in the formulation increases the mobility of
polymer chains, which could explain the broader variability of samples
at higher concentrations of Tween 80® (Fig. 7d). Caon and co-workers
(Caon et al., 2013) stabilized PEG 4000/Tween 80® formulations by
adding polyvinlypyrrolidone (PVP) which reduced the chain mobility of
PEG in the solid dispersions. Unga and co-workers (Unga et al., 2010)
using DSC have shown that the presence of lipids in solid dispersions
influences the folding and unfolding of PEG 4000. The unfolding rate of
PEG seems to be related to the stability of formulations and some lipids
can accelerate or decrease this process. In general, they observed that
small hydrophilic lipids increased the folding of PEG on cooling
whereas large non-polar lipids retarded the PEG unfolding.

These modifications of PEG chains were on a molecular scale and
did not provoke phase separation, as shown by chemical images, which
remained homogeneous over time. Chemical maps of each IC over the
time for samples containing 20% of PEG 6000 and 80% (w/w) of Tween
80® are shown in Fig. 8. It can be seen that the distributions of PEG
6000 and Tween 80® is homogeneous for one year in this sample
(Fig. 8a–f). However, IC3 signals clearly change over the time

Fig. 5. PCA results of sample containing 30.04% (w/w) of Tween 80® and 70% of PEG 6000, including the reference spectra to augment the image matrix: a) Score
plot on PC1 vs PC2, b) Comparison of loadings on PC1 with the difference between the two excipient spectra, c) chemical map of scores on PC1, d) histogram of the
scores.
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(Fig. 8g–i), indicating that IC3 represents a kinetic process that ceased
after some time, as can also be seen in Fig. 7f (more negative values and
without any difference between the samples after one year). Also, DSC
analysis was done on a sample at the initial time and after two years
(Fig. S5). The melting point of the sample was modified (59.29 to
55.75 °C), indicating that PEG structure was indeed changed over time.

This variation over the time was also observed by PCA. Whereas
PC1 describes the variability in the concentrations (Fig. S6a shows that
PC1 scores increase with the concentration of Tween 80®), PC2 de-
scribes another phenomenon that is taking place in the samples, as can
be seen in Fig. S6b with samples after one year presenting higher scores
than the earlier times. Since PCA provides loadings instead of signals,
the interpretation of PC2 in Fig. S6c is not straightforward. Finally,
MCR-ALS only recovered 2 signals related to the chemical components,
therefore this method could not provide any information on the struc-
tural changes of the samples over the time. This highlights an

interesting use of ICA: the separation of physical phenomena from
chemical information, as demonstrated in this work.

4. Conclusions

Observing the results for the heterogeneous sample (CP/
Transcutol®), ICA outperformed MCR as a blind resolution method.
However for the very homogeneous sample (PEG 6000/Tween 80®)
both suffered from the problem of rank deficiency. It was shown that
augmenting the matrix with just the pure reference spectra or several
calibration samples provided the same results. Therefore the simplest
procedure of using only the reference spectra should be preferred. The
plot of different concentrations showed small deviations from linearity,
mainly for PEG 6000, probably due to the changes of scattering over the
concentration range. In both cases, PCA recovered the differences of the
two pure spectra in the loadings, indicating that loadings cannot be

Fig. 6. a) Spectral profile obtained by MCR-ALS and b) source signals obtained by ICA using 2 components at the initial time. Chemical images for: c) IC1 and d) IC2,
histograms obtained by ICA for PEG 6000/Tween 80® sample on e) IC1 and f) IC2.
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interpreted as pure signals, as sometimes found in literature. Therefore
PCA method provides ‘contrast’ images only.

The major contribution of this work was to show how Raman che-
mical images and chemometrics can be valuable to evaluate chemical
miscibility of components in semi-solid formulations and predict their
stability and physical transformations. In the case of CP/Transcutol®

which chemical images indicated heterogeneity the formulation indeed

presented phase separation after 6months. The mixture PEG 6000/
Tween 80® was observed to be homogeneous in the beginning, and even
after one year no phase separation was observed. However, PCA and
ICA indicated that a physical transformation was occurring within the
sample over the time. ICA could separate this information in a third IC,
which clearly showed to be a kinetic phenomenon. IC1 and 2 were
related to the concentration of the two compounds over the complete

Fig. 7. Source signals on: a) IC1, b) IC2 and c) IC3. Proportions vs. concentrations on d) IC1, e) IC2 and f) Proportions on IC3 for samples of PEG 6000/Tween 80®

over the time.

Fig. 8. Chemical maps of the sample containing 20% of PEG 6000 and 80% (w/w) of Tween 80®. a) IC1 at the initial time, b) IC1 after 6months, IC1 after 1 year, d)
IC2 at initial time, e) IC 2 after 6months, f) IC2 after 1 year, g) IC3 at initial time, h) IC3 after 6months and i) IC3 after 1 year.
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time range. Our results suggested that the presence of Tween 80® has
great influence the physical stability of PEG 6000, which could be de-
leterious for a pharmaceutical formulation, as it has been described by
some authors that have investigated it by DSC. MCR-ALS could not
detect these physical changes that were occurring in the sample.

Further research on of lipid pharmaceutical formulations is being
conducted in our laboratory, aiming at understanding miscibility,
physical transformations and chemical interactions for the development
of stable formulations for poorly water soluble drugs.
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