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ABSTRACT

Phylogeographic studies have merged different disciplines to explain speciation processes at both
spatial and time scales. Although the number of phylogeographic extant studies has increased
almost exponentially, few have been conducted in tropical countries, especially using plants. Plants
are interesting models for such studies because their responses to different habitat conditions are
reflected directly in the size and distribution of populations, enabling direct tests of alternative
demographic scenarios. Here, we review phylogeographic studies using plant species occurring in
different vegetation domains within Brazil, which has the greatest number of plant species in the
world. Based on a detailed examination of 41 published articles, we synthesized the current
knowledge and discussed the main processes driving the high levels of plant diversity within
Brazilian domains. General patterns of diversification could be inferred due to the number of
species studied, especially in the Cerrado and Atlantic Forest, the most intensively studied domains
(34.1% and 17.1% of the studies, respectively). Distinct vegetation types within both biomes were
affected differently by the Pleistocene climatic oscillations. Edaphic conditions and geographical
barriers (rivers and mountains) have also influenced the phylogeographical patterns of plants
species from Amazonia and the Atlantic Forest. Other Brazilian domains, such as the Caatinga,
Pantanal, and Pampas, have been studied to a lesser extent and no common phylogeographic
pattern across species could be inferred. Issues regarding past connections between distinct
domains also remain unclear, including those affecting the two main forest domains in South
America. Future research on plant species will fill these information gaps, improving our
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understanding of the complex diversification processes affecting the South American biota.

I. Introduction

Species distribution patterns in space and time are criti-
cal for understanding speciation processes (Sanmartin,
2012). Major evolutionary forces such as gene flow,
genetic drift, and natural selection will be directly influ-
enced by landscape elements, leading to different degrees
of divergence among populations and incipient species.
For example, geographic barriers would prevent gene
exchange among conspecific populations, which in turn
may increase their differentiation due to drift and natural
selection associated with different environmental condi-
tions. The action of gene flow, drift, and natural selection
could be related to historical climatic oscillation events
and past geologic processes that changed landscape fea-
tures and, consequently, the demography of populations
and species. For example, glacial cycles dramatically
changed the distribution of vegetation domains in South

America (Clapperton, 1993), reducing gene exchange
and increasing the effects of drift in fragmented popula-
tions. Thus, to find support for speciation models, such
as the refugee theory (Haffer, 1969), the associations
between past climatic oscillations and both the time and
intensity of evolutionary forces involved in lineage diver-
sification must be explored. According to Bennett and
Provan (2008), researchers aiming to provide support for
the refugee theory need to provide evidence of changes
in population sizes; consequently, the time periods in
which drift and gene exchange were affected by such
demographic changes.

The role of geographic space and time in speciation
has been intensively studied within the field of biogeog-
raphy (Lomolino et al., 2010; Sanmartin, 2012). Scientific
expeditions to tropical regions in the eighteenth century
have yielded explanations of the evolution of floras in
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different continents, and interest in biogeography again
increased in the 1950s, when the theory of continental
drift was fully accepted (De Queiroz, 2005). The use of
molecular markers to investigate geographical patterns
of variation, from populations to higher taxa, enabled
the reconstruction of the evolutionary history of various
groups, especially those with a poor fossil record (Soltis
et al., 2009). At the end of the 1980s, a new discipline
emerged aiming to investigate the effects of time and
geographic space on speciation events: phylogeography.
In his seminal study, Avise et al. (1987) coined the term
phylogeography in an attempt to provide direction to
those interested in the geographic context of speciation
events. Later, Avise (2000) provide the basic agenda of
phylogeography, guiding population-level studies inter-
ested in speciation.

Phylogeographic studies have increasingly merged
different disciplines to explain the history and formation
of species at geographic and time scales. Initial studies
mostly used molecular datasets, using DNA polymor-
phisms as the primary source of information to infer
past demographic events and the existence of multiple
lineages in different environments (Olsen and Schaal,
1999; Collevatti et al., 2003). The characterization of
highly informative nuclear and plastid regions enabled
the testing of alternative demographic scenarios in plant
populations (i.e., Palma-Silva et al., 2009; Bonatelli et al.,
2014, and others). The role of historical refuges in the
diversification of lineages and species has been con-
firmed for several plant species (Ramos et al., 2007;
Ribeiro et al., 2011). The inclusion of species distribution
models greatly enhanced the potential to infer past
demographic events (Collevatti et al., 2015). By retriev-
ing the potential past distribution area, the results
obtained independently from the models could be cross-
checked with the molecular evidence of population
expansion and/or bottlenecks (Collevatti et al., 2012a;
Lima et al, 2014). Natural hybrid zones have also been
the subject of phylogeographic studies, which have
involved spatial distribution patterns, genetic composi-
tion of parental and hybrid plants, and reproductive iso-
lation across species boundaries (Hewitt, 2001; Lorenz-
Lembke et al., 2006; Palma-Silva et al., 2011). Because spe-
cies formation is a population-level process, the study of
reproductive isolation within species may shed light on
the processes operating during the earliest stages of spe-
ciation (Scopece et al., 2010). To achieve this, a detailed
phylogeographic picture is crucial to understand how
reproductive isolation evolves among lineages, in a geo-
graphic context (Pinheiro et al., 2013).

Phylogeography has been growing vigorously as an
integrative discipline, bridging different sources of data
(Diniz-Filho et al., 2008). The number of extant studies

has increased almost exponentially (Beheregaray, 2008).
However, until 2006, most studies were performed in the
northern hemisphere, despite the fact that most biodiver-
sity is concentrated in the tropics (Beheregaray, 2008).
Indeed, Brazil is the 15th most-productive country in
terms of phylogeography studies (Beheregaray, 2008),
but has the greatest number of angiosperm species
(BFG—The Brazil Flora Group, 2015). Therefore, few
phylogeographic studies have been conducted in tropical
countries with a rich biota, such as Brazil. There is also
an imbalance between the number of studies of plants
and animals. Turchetto-Zolet et al. (2013) reported that
most phylogeographic studies in South America, across
all vegetation domains of the continent, involved
animals.

Various hypotheses regarding the origin of the con-
siderable levels of plant diversity in tropical countries
have been formulated (Antonelli and Sanmartin, 2011).
Much effort has been devoted to investigating broad pat-
terns of diversification, using plant phylogenies at higher
taxonomic levels to determine the mechanisms of plant
speciation (Hoorn et al., 2010; Hughes et al., 2013). In
contrast, population-level studies have received less
attention, and little is known of the microevolutionary
mechanisms during the first stages of speciation. Here,
we review phylogeographic studies of plant species in
Brazil as biological models. Compared to other megadi-
verse countries, Brazil has the greatest number of angio-
sperms, with 32,086 species (BFG, 2015). Thus, using
plant phylogeographic studies performed in Brazil, we
discuss the main processes driving the diversification of
lineages and species in this highly biodiverse region. Spe-
cifically, we had the following goals: (1) to review the
current knowledge of plant phylogeography in Brazil; (2)
to verify the occurrence of demographic processes
(expansion and contraction) related to glacial/interglacial
climatic oscillations; (3) to assess hypothesized refugia
types (multiple or single); and (4) to discuss the role of
geological and climatic changes during the Tertiary and
Quaternary in shaping the phylogeographic patterns of
plants in hyperdiverse vegetation domains in South
America.

Il. Phylogeographic studies in Brazil

This review focuses on the historical distribution and
dynamics of Brazilian plant species based on phylogeog-
raphy and the genetic signatures of vegetation history.
For the purpose of this review, we consider all vegetation
domains found in Brazilian territory. We review and
compare studies on the open and seasonal vegetation
domains known as Caatinga, Cerrado, and Pampas, and
mesic domains such as the Brazilian Atlantic Forest,



Amazon, and Pantanal. The literature survey was con-
ducted in the Web of Science using the keywords
“phylogeograph™ + “plant” and one of the following
domains: “Amazon,” “Atlantic Forest,” “Caatinga,” “Cer-
rado,” “Pampas,” and “Pantanal.” Following this nonex-
haustive survey, we selected 41 papers (Table 1) based
on an inspection of their title, abstract, and keywords.

The first study using one of the reference phrases was
published in 1999, and since then the number of studies
has increased (Figure 1), albeit at a different rate than
that for South America as a whole (Turcheto-Zolet et al.,
2013). The studies involved 20 plant families and 30 gen-
era. The four most studied families were Fabaceae (seven
studies), Solanaceae (four), Orchidaceae (three), and
Bignoniaceae (three) (Figure 2A). Approximately 78% of
the studies focused on only 11 families. Similarly, most
genera were studied only once, whereas 30% were inves-
tigated twice or more (Table 1, Figure 2B). Most phylo-
geographic studies used trees (53.7%) and herbs (36.6%)
as models (Table 1). Most studies (75.6%) sampled spe-
cies in only one phytogeographic domain (Figure 3).
Cerrado was the most studied domain (34.1% of the
studies), followed by the Brazilian Atlantic Forest
(17.1%), Amazonia (14.6%), Pampas (7.3%), and Caa-
tinga (2.4%, one study). To the best of our knowledge,
no phylogeographic study of plant species from the Pan-
tanal domain has been published. Species occurring in
more than one phytogeographic domain were the focus
of 11 studies, most of which included populations dis-
tributed within the Cerrado domain. Species distributed
across Caatinga and Cerrado were the most intensively
studied (three studies), followed by the Brazilian Atlantic
Forest and Cerrado (two), Amazonia and Cerrado (two),
and the Brazilian Atlantic Forest and Amazonia (two). A
comparative approach, using two or more co-distributed
species, was used in only 17.1% of the studies. Niche
models were included in ten studies, and hybridization
events were detected in approximately one-third of the
studies. Genic/intergenic DNA region sequencing was
the most common method used in the phylogeographic
studies in this review (Figure 4A). Microsatellite markers
were used in nine studies, and in most cases were com-
bined with sequence data. Eighteen studies combined
nuclear and plastid regions, and the remaining used only
nuclear (6 studies) or plastid markers (13 studies)
(Figure 4B).

» «

lll. Phylogeographic patterns in tropical forest
domains

The Brazilian Atlantic Forest and Amazonia are the two
main forest domains in South America (Ab’Saber, 1977).
The Brazilian Atlantic Forest is restricted to the Atlantic
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Coast. Phylogeographic studies conducted in the Brazil-
ian Atlantic Forest support the idea that this domain was
deeply affected by historical climatic oscillation events,
such as glacial/interglacial cycles, as well by geographic
factors, such as mountains and rivers. The existence of
multiple refuges, for example, is reported in almost all
plant phylogeographic studies conducted in the Brazilian
Atlantic Forest (Table 1). Palma-Silva et al. (2009) found
multiple lineages along the distribution of Vriesea gigan-
tea, an epiphyte bromeliad species distributed across the
Brazilian Atlantic Forest. The different demographic sig-
natures of northern and southern populations suggest
regions in which the forest was fragmented (in the south-
ern populations) and continuous (in the northern popu-
lations) during the Last Glacial Maximum (LGM),
following the pattern expected for glacial refuges (Ben-
nett and Provan, 2008). The same pattern has been
reported for other plant species, including a tree species,
Dalbergia nigra (Ribeiro et al., 2011) and a liana, Passi-
flora actinia (Teixeira et al., 2016). Contrasting results
were provided by Pinheiro et al. (2011) using an herba-
ceous orchid species that occurs in sand dune vegetation
close to the seashore. In this study, increasing levels of
genetic diversity and signs of demographic stability were
observed in populations distributed in the southern por-
tion of the Brazilian Atlantic Forest. These results are in
agreement with the notion that the Brazilian Atlantic
Forest is a mosaic of different physiognomies, and each
vegetation type was probably differently influenced by
past climatic oscillations and geographic barriers (Leite
et al., 2016). Considering this heterogeneous scenario,
phylogeographic studies using species occurring in dif-
ferent environments may reveal novel and informative
patterns.

The heterogeneous nature of the southern and north-
ern regions of the Brazilian Atlantic Rainforest, as deter-
mined by floristic inventories (Oliveira—Filho and
Fontes, 2000) and niche models (Carnaval and Moritz,
2008), has been confirmed by phylogeographic studies.
Northern Rio de Janeiro, Espirito Santo, and southern
Bahia are a transition zone between lineages, which show
marked genetic divergences in this region (Ribeiro et al.,
2011; Turchetto-Zolet et al., 2012; Pinheiro et al., 2013).
The fragmentation of the Brazilian Atlantic Forest dur-
ing glacial cycles, splitting these large portions of forest
is a possible explanation for this pattern (Carnaval and
Moritz, 2008). The existence of large river basins that act
as geographic barriers for intraspecific gene exchange,
such as the Doce River Basin, is an alternative explana-
tion of the marked floristic differences between the
northern and southern portions of the Brazilian Atlantic
Forest (Bigarella et al, 1975; Prance, 1982). Recently,
Cazé et al. (2016) provided evidence supporting the
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Figure 1. Number of phylogeographic articles published
between 1999 and June 2016, referring primarily to plant species
occurring in vegetation domains in Brazil.

divergence of lineages of Passiflora contracta associated
with the major river basins within the Brazilian Atlantic
Forest, including the Doce River.

The Brazilian Atlantic Forest is influenced by several
mountain chains in its range (Morellato and Haddad,
2000). Severe restrictions in gene exchange may lead to
genetic divergence between populations on different
mountains, which would explain the high levels of spe-
cies diversity in this forest domain (Scarano, 2002). This
hypothesis has been confirmed by the few studies of spe-
cies occurring at high elevations within the Brazilian
Atlantic Forest. For example, Lorenz-Lemke et al. (2010)

Figure 2. Most frequently investigated plant families (A) and
genera that are included more than once (B) in phylogeographic
studies of plant species occurring within Brazil.

found multiple lineages of Petunia within a species clade
restricted to high altitudes. High levels of genetic diver-
gence were found among Pitcairnia lineages endemic to
rock outcrops separated by a few kilometers (Palma-Silva
et al., 2011). These studies support the view that restric-
tions of gene exchange in these naturally fragmented
environments likely contribute to lineage diversification
on mountains. The extent to which the restriction of
gene exchange increases the reproductive isolation
among these incipient lineages and species, and the role
of drift, instead of natural selection, in the fragmented
environments, should be addressed by future studies
using mountain plants as models. Palma-Silva et al.
(2011) reported the permeability of the reproductive bar-
riers between co-occurring Pitcairnia species growing in
inselbergs. Extensive levels of haplotype sharing were
detected on individual mountains, indicating old hybrid-
ization events. Moreover, despite the limited gene flow
between conspecific populations, introgression was rela-
tively low and did not affect the cohesion of parental spe-
cies. In the absence of high levels of gene exchange,
selection may play an important role in maintaining spe-
cies cohesion, particularly in naturally fragmented popu-
lations (Palma-Silva et al., 2011; Southcott and Ostevik,
2011).

The Amazonian domain encompasses several coun-
tries, but the majority lies in Brazil. Several hypotheses to
explain the biogeographical history have been proposed
in the Amazon domain (reviewed by Antonelli and San-
martin, 2011). The effect of soil diversity on levels of
plant diversity, tectonic activity, and refuges are consid-
ered important drivers of speciation in the Amazonia
domain, and were evaluated by phylogeographic studies.
However, despite the broad extension and high levels of
plant diversity in Amazonia (Forzza et al., 2012), few
phylogeographic studies using a lower species level
approach have been published (Figure 3A). Fine et al.
(2013) investigated two Protium species with different
degrees of edaphic specialization: P. alvarezianum, an
edaphic specialist of white-sand soils distributed
throughout the Amazonia domain; and P. subserratum,
an edaphic generalist found in different soil types,
including white-sand soils. The results confirmed the
genetic differentiation of both species, which was par-
tially correlated with the soil types inhabited. The
Andean uplift was the most important tectonic event in
the recent history of South America. However, a number
of other tectonic and geomorphological processes were
influenced by the Andean uplift, such as the formation
of arches or ridges and changes in the direction and vol-
ume of rivers within the Amazon Basin (Marroig and
Cerqueira, 1997). Such processes have caused genetic
breaks in some species (da Silva and Patton, 1998), and
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Figure 3. Number of phylogeographic studies using species distributed in single (A) and multiple phylogeographic domains (B).

plant phylogeographic studies have tested some of these
hypotheses. For example, Roncal et al. (2015) studied
Astrocaryum species and found evidence of allopatric
speciation driven by contrasting geological activity in the
Fitzcarrald Arch uplift and subsidence of the northern
Amazonian foreland basin.

The Refugia Theory is an influential explanation for
the origin of species diversity (Bennett and Provan,
2008), including within the Amazonia domain (Hoog-
hiemstra and van der Hammen, 1998). This theory is
controversial due to several inconsistencies (reviewed by
Rull, 2011). However, the theory has been abandoned in
the absence of population-level studies using plants as
models. Phylogeographic studies would enable an evalu-
ation of the role of refuge theory in lineage and species
diversification in the Amazonia domain, as in other
regions (Petit et al., 2003; Liu et al., 2012; Poncet et al.,
2013). According to Bennett and Provan (2008), studies

of refuges should consider both the size and abundance
of populations to detect demographic changes due to gla-
cial/interglacial cycles. Unfortunately, only Lemes et al.
(2010) discussed the role of forest refuges in lineage
diversification of the tree Swietenia macrophylla. This
study detected populations with high levels of differenti-
ation and diversity, which indicates the presence of mul-
tiple refuges in the Amazonian basin (Lemes et al,
2010). However, different species may show contrasting
patterns of genetic variation due to different pollination
and dispersion mechanisms. For example, Dick et al
(2007) detected very low levels of genetic differentiation
among populations of Ceiba pentandra, which did not
support any past fragmentation of the Amazonia
domain. The high level of diversity detected in popula-
tions of Jacaranda copaia within the Amazon Basin was
interpreted as indicative of a zone of secondary contact
between divergent lineages (Scotti-Saintagne et al.,

A
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Figure 4. Major molecular markers used in phylogeographic studies of plant species occurring within Brazil (A), and the nuclear and/or
organelle origin of markers used in such studies (B). The number of studies is shown in parentheses.
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2013). Studies of multiple co-occurring species have been
used as natural replicates to support, or not, the persis-
tence of forest refuges during glacial cycles. Conse-
quently, comparative phylogeographic studies would
provide important information about the potential effect
of past refuges in lineage diversification, as for previous
works on tropical forest trees (Poelchau and Hamrick,
2013).

IV. Phylogeography in seasonal vegetation
domains

The central Brazilian Cerrado and the Caatinga in north-
eastern Brazil form, together with the Argentinean, Boli-
vian, and Paraguayan Chaco, the so-called “dry diagonal
of open vegetation” of eastern South America (Sar-
miento, 1975; Pennington et al., 2006; Werneck, 2011).
The Cerrado is a savanna that covers a huge area of cen-
tral Brazil and has dystrophic soils, a marked seasonality
of precipitation, and experiences frequent fires (Penning-
ton et al., 2006). The Caatinga is the largest nucleus of
seasonally dry tropical forest in the country (SDTEF;
Prado and Gibbs, 1993) and typically harbors fertile soils
under the drought-prone climate of northeast Brazil
(Prado, 2003; Queiroz, 2006). These open vegetation
domains are poorly characterized in terms of bio-
geographical relationships (see review of Werneck,
2011), and the response patterns of organisms from these
domains are unclear (Werneck, 2011; Turchetto-Zolet
et al., 2013). Phylogeographic studies of plants from the
Brazilian open and seasonal domains are biased toward
the Cerrado vegetation. Twelve studies focused on this
domain, while three focused on species distributed in
SDTFs, including the Caatinga (Figure 3A).

The Cerrado is not a uniform savanna, but a mosaic of
different physiognomies, including savannas, campos
rupestres (rocky fields) and humid formations, such as
veredas and gallery forests (Eiten, 1972; Furley and Rat-
ter, 1988). Both geological and paleoclimatic events con-
tributed to the diversification of plant and animal
lineages within this domain (Moraes et al., 2009; Prado
et al.,, 2012; Bonatelli et al., 2014). However, studies of
plant species from the Cerrado (Table 1) have indicated
a preeminent role of the climatic oscillations of the Qua-
ternary on the phylogeographic structure of many spe-
cies. Although plant community responses to climate are
heterogeneous (see above), some diversification patterns
have emerged due to the increasing number of species
studied, including lineages with distinct ecological
requirements.

Tree species in Cerrado show evidence of a recent col-
onization of the southern Cerrado after a range retrac-
tion during the LGM (Collevatti et al, 2003; Ramos

et al., 2007; Novaes et al., 2010, 2013; Collevatti et al.,
2015; Ribeiro et al., 2016). This pattern is supported by
paleopalynological studies (Behling and Lichte, 1997;
Behling, 1998; Behling, 2002) and a recent paleodistribu-
tion modeling study (Werneck et al., 2012). Nevertheless,
retraction with population subdivision in multiple refu-
gia during the LGM has been recorded for a savanna tree
species from central Brazil (Collevatti et al., 2012a) and a
palm species restricted to wetlands (Lima ef al., 2014).
Additionally, a single species presented only a slight
range retraction, with a large stable area maintained
since the LGM (Souza et al.,, 2016). Higher genetic diver-
sity in the core distribution of diverse plants has also
been reported by these phylogeographic studies (Ramos
et al., 2007; Novaes et al., 2010, 2013; Ribeiro et al., 2016;
Souza et al., 2016).

Variable genetic effects can be determined by differen-
ces in natural-history traits among species, especially
those in the contrasting formations of the Cerrado
domain. Climate fluctuations have affected plants
restricted to the campos rupestres formations within the
Cerrado in a different manner. Instead of retraction, the
evidence suggests range expansion of these plants during
glaciations (Collevatti et al., 2009; Barbosa et al., 2012;
Collevatti et al., 2012b; Bonatelli et al., 2014). Fossil evi-
dence indicates that the decreasing temperatures and
humidity during the glacial period drove a reduction in
forest cover and favored the expansion of savanna and
grassland vegetation (Salgado-Labouriau et al, 1998;
Mayle et al., 2000; Behling and Hooghiemstra, 2001).
Such climatic conditions favored range expansion of
dry-adapted species to lower altitudes during the LGM.
A warmer and wetter climate then resulted in the frag-
mentation of a broader distribution, which is currently
restricted to multiple interglacial microrefugia (see Bona-
tellii et al., 2014).

Despite these contrasting patterns, studies of the flora
of Cerrado have commonly reported a high level of pop-
ulation genetic differentiation (Collevatti et al., 2003;
Ramos et al., 2007; Collevatti et al., 2012a, Novaes et al.,
2013; Bonatelli et al., 2014). A notable exception is the
widely distributed tree species, Dimorphandra mollis,
which has lower levels of genetic diversity and genetic
differentiation (Souza et al, 2016). Additionally, an east-
west split in genetic structure was observed in both
widely distributed tree species (Collevatti et al., 2003;
Ramos et al, 2007, 2009; Novaes et al, 2010, 2013;
Ribeiro et al., 2016) and plants from rocky fields (Colle-
vati et al., 2009; Bonatelli et al., 2014).

SDTFs are scattered throughout other vegetation
types, occurring as enclaves within the Cerrado and
Chaco domains, and as isolated nuclei—the largest being
located in the Caatinga domain (Prado, 2000; Werneck,



2011). In fact, the Caatinga domain is one of the least
studied Brazilian vegetation region (Turquetto-Zolet
et al., 2013), and vegetation shifts in the SDTF during
the Pleistocene are unclear (Thomé et al., 2016). The few
extant phylogeographic studies that focused on species
from SDTFs (Table 1) reported distinct responses to
Quaternary climate changes. Two studies of SDTF plant
species (i.e., Caetano ef al., 2008; Collevatti et al., 2012c)
revealed patterns similar to those predicted by the Pleis-
tocene Arc hypothesis (Prado and Gibbs, 1993). Accord-
ing to this hypothesis, SDTFs were widely and
continuously distributed during the dry and cold periods
of the Pleistocene, and the present-day range of SDTF
nuclei is a relic of a wider distribution (Prado and Gibbs,
1993; Pennington et al., 2000). Phylogeographic analyses
of Ficus bonijesulapensis (Vieira et al., 2015) and Cedrela
fissilis (Garcia et al., 2011), however, showed genetic sig-
natures of a recent expansion (during warmer and wetter
periods), which is in accordance with the results of pale-
odistribution modeling (Werneck et al., 2011) and the
dispersal scenarios proposed by Mayle et al. (2004).
According to Werneck et al. (2011), the distribution of
SDTFs was more fragmented during the LGM than the
Holocene, when a southern expansion of this vegetation
type occurred. Future research on plant species of these
dry and seasonal forests will increase our understanding
of the diversification processes of the South American
biota.

Seasonal formations also occur in the sub-tropical
region of Brazil. The Pampas is one of the largest warm
grassland areas globally and occurs in east-central
Argentina, Uruguay and the extreme south of Brazil
(Fregonezi et al., 2013). This sub-tropical domain is
characterized by seasonality in precipitation patterns and
soil heterogeneity (Overbeck et al., 2007; Roeschet et al.,
2009). Few studies have attempted to investigate the phy-
logeographic structure of the grassland plant species of
Southern Brazil (Figure 3A). Diversification of some typ-
ical Pampas vegetation species was influenced by ecologi-
cal factors to a greater degree than historical factors
(forest range shifts or ice-sheet advances) (Fregonezi
et al., 2013). For example, Longo et al. (2014) found that
morphological variants within the Petunia integrifolia
complex may be associated with the variation in soil
salinity between mainland and coastal regions. More-
over, an expansion after a size reduction resulted in the
establishment of two allopatric groups within this com-
plex, one of them associated with a geologically ancient
area and the other in areas under the influence of marine
transgressions/regressions. Climatic and sea level
changes have also been reported to influence the evolu-
tionary history of Calibrachoa heterophylla and P. integ-
rifolia, herbaceous species from the South Atlantic
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Coastal Region (Mader et al, 2013; Ramos-Fregonezi
et al., 2015). Both species exhibited a pattern of recent
population expansion associated with colonization of
coastal regions. There is a clear need to increase the
number of studies of specific grassland formations to
assess the impact of climate and ecological barriers on
speciation in sub-tropical South America.

V. Phylogeography of species occurring in
multiple vegetation domains

The Amazonia and Brazilian Atlantic Forest domains are
separated by a broad corridor of open vegetation physi-
ognomies, comprising the Chaco, the Caatinga, and the
Cerrado. This corridor of dry vegetation is an important
barrier to species interchange and migration between the
two tropical forest domains (Rizzini, 1979; Mori et al.,
1981). There is much debate in the literature regarding
the biogeographic history of both forest domains. Some
authors agree with the view that both Amazonia and the
Brazilian Atlantic Forest were more connected in the
past, before the LGM (Bigarella et al, 1975; Prance,
1982). During drier periods, gallery forests and seasonal
forests may have acted as floristic connections between
Amazonia and the Brazilian Atlantic Forest (Oliveira-
Filho and Ratter, 1995). Alternatively, despite the overall
similarities in structure and physiognomy, Amazonia
and the Atlantic Forest have a markedly different species
composition, which does not support strong biogeo-
graphic connections in the past (Oliveira—Filho and
Fontes, 2000).

Few plant phylogeographic studies have explored the
potential past connection between Amazonia and the
Brazilian Atlantic Forest. De Oliveira et al. (2010)
reported marked differences between lineages of Carapi-
chea ipecacuanha in Amazonia and the Brazilian Atlantic
Forest, suggesting long periods of isolation, rather than
past connections. Turcheto-Zolet et al. (2012) reported
similar results for the widespread tropical tree species
Schizolobium parahyba. Intriguingly, the phylogeo-
graphic evidence of past connections between these two
forest domains came from studies using animals as mod-
els (Costa, 2003; Batalha-Filho et al., 2013; Thomé et al.,
2016). Future plant phylogeographic studies should
explore the potential existence of past connections
between Amazonia and the Brazilian Atlantic Forest,
because few empirical data are available. Of special inter-
est are species that occur in both forests (Oliveira—Filho
and Fontes, 2000), which should be used as models to
evaluate the evolution of these tropical forest domains.

Some phylogeographic studies in Brazil have focused
on plant species associated with both mesic and seasonal
domains (Figure 3B). Advances in understanding the
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complex shifts among contrasting biomes have resulted
from palynological (Behling and Negrelle, 2001; Pes-
senda et al., 2009) and phylogeographical (Martins et al.,
2009; Franco et al., 2012) evidence, but further work is
needed. Studies to date have suggested that forest and
grassland expansion/fragmentation and dispersal events
explain the differentiation among plant populations.
Species from the Cerrado-Atlantic Forest were the focus
of the phylogeographic studies by Novaes et al. (2010)
and Pinheiro et al. (2013). The tree Plathymenia reticu-
lata shows a pattern of recent expansion from the central
Cerrado to northeastern Brazil via eastern (Atlantic
coast) and western (inland) colonization routes (Novaes
et al., 2010). In contrast, recent population contraction
events were detected in populations of Epidendrum den-
ticulatum, particularly at the margins of its distribution
range (in the Atlantic rainforest), suggesting that it was
restricted to multiple refuges during forest expansion
events (Pinheiro et al, 2013). Past floristic connections
between the Atlantic Forest and Cerrado domains are
suggested by this study, because there is no differentia-
tion between E. denticulatum populations in such bio-
mes. Such connections are also indicated by the
extensive haplotype sharing among populations of E. cin-
nabarinum, a species associated with the Atlantic Forest
and Caatinga inselbergs (Pinheiro et al, 2014). This
orchid species shows signs of expansion from inland
toward dry coastal vegetation zones as a result of long-
distance dispersal events. Only two studies sampled pop-
ulations in Amazonia and Cerrado vegetation
(Figure 3B). These studies reported the geographical ori-
gins of the cassava (Manihot esculenta) (Olsen et al.,
1999), and inferred fragmentation events consistent with
post-Pleistocene habitat shifts in the rainforest-Cerrado
ecotone (Olsen et al., 2002). We claim here that the his-
torical connection dynamics among Brazilian biomes
should take advantage of the emergence of model-based
methods of phylogeographic inference. The evidence
mentioned above will be confirmed or refuted using
other evolutionary scenarios (Collevatti et al., 2012¢;
Lima et al., 2014).

VI. Final remarks and conclusions

Plants are long held recognized as models to track cli-
mate change over different time scales (Holdridge,
1947). Due to their lack of movement, plant populations
show strong changes in distribution and abundance in
response to different habitat conditions (Dansereau,
1957; Whitaker, 1975). In this context, plants could be
used as models to test the effects of climate change on
species distribution under different time scales, from
thousands of years to the last century. A detailed record

based on fossilized pollen grains has been used for paleo-
vegetation reconstruction (reviewed by Behling, 2002;
Ledru et al., 2015). By studying the genetic architecture
and lineage history of plant groups present in the fossil-
ized pollen record, phylogeographic studies using plant
species may enable testing of the demographic scenarios
inferred by paleovegetation reconstructions and by cur-
rent patterns of genetic diversity. Plants have also pro-
vided important insights into the recent and rapid
climate changes (Root et al., 2003), and phylogeographic
studies are crucial for understanding the effect of such
drastic changes on plant populations.
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