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Abstract

The South American continent is composed of several biogeographical regions

harbouring the highest biodiversity on the globe, encompassing five of the world’s

biodiversity ‘hot spots’. Nonetheless, the patterns and processes responsible for shap-

ing its astonishing species diversity are largely unknown. Here, we present a review of

current South American phylogeographical knowledge based on published articles on

this topic. An appraisal of the literature reveals emerging phylogeographical patterns

in the biota of South America. The striking phylogeographical divergence observed

among organism lineages in South American studies is suggestive of high levels of

undocumented species diversity. The interplay between Pleistocene climatic oscilla-

tions and Pliocene/Miocene orogenic events has contributed to shaping the current

diversity and distribution of modern lineages in both the tropical and temperate

regions of South America. Although older divergence times were observed for a range

of species, most herpetofauna underwent an intraspecific lineage split much earlier

than other organisms. The geographical ranges of species associated with forest habi-

tats were reduced mainly during glacial cycles, whereas species associated with open

vegetation domains have shown variable responses to climatic oscillations. The results

suggest a highly complex mosaic of phylogeographical patterns in South America. We

suggest future research directions to promote a better understanding of the origin and

maintenance of the South American biota.
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Introduction

South America is a large continent extending over a

wide latitudinal range (between 12°N and 56°S) that

includes an extensive variety of climates, closely associ-

ated with vegetation formation. The more extensive

northern part, located near the equatorial zone, is tropi-

cal, whereas the narrower southern part has subtropical

and cool temperate climates (Fittkau et al. 1969; Sylves-

tre 2009; Aragon et al. 2011). The continent also shows

complex geomorphological patterns, such as large river

plains (i.e. the Amazon basin) and extensive mountain

chains (i.e. the Andean Cordillera) (Clapperton 1993).

South America harbours the greatest biodiversity on

Earth, containing five of the world’s biodiversity ‘hot

spots’ (Myers et al. 2000). Furthermore, South America

is a biogeographically diverse continent composed of a

variety of different biomes/ecoregions (Morrone 2004,

2006; Aragon et al. 2011). The diversification processes

on this continent cannot be restricted to a particular

time interval or mechanism (Rull 2011). The evolution-

ary history of South America has been linked to a suc-

cession of major geological events that have modified

both continents and oceans (Graham 2009; Cavallotto

et al. 2011; Folguera et al. 2011; Lavina & Fauth 2011).

Climate changes and associated glaciations, as well as

palaeobasins and shifting shorelines due to marine
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transgressions, have impacted this continent, creating

complex scenarios for species diversification (Colinvaux

et al. 1996; Behling 2002; Antonelli & Sanmartin 2011;

Aragon et al. 2011; Compagnucci 2011).

Much effort has been put into understanding the

complex and high levels of biodiversity in South Amer-

ica. Phylogeographical studies of South American taxa

may provide valuable insight into the historical

processes underlying diversification in this region.

Molecular analyses based on DNA sequence variations

in living organisms together with advances in statistical

phylogeography have shed further light on how geolog-

ical events and climatic changes have modified the

demographic history of populations (Avise 2009). Such

phylogeographical studies can provide a better under-

standing of the biodiversity, dispersal modes, diversifi-

cation times, extinctions, refugia areas and other

species-/population-level processes (microevolutionary

processes; reviewed by Diniz-Filho et al. 2008). In addi-

tion, comparative phylogeography may provide infor-

mation regarding significant historical events that have

a common influence on many species and may indicate

common biotic responses to historical climatic and

geomorphological processes (Bermingham & Moritz

1998). These studies are able to detect the regional- and

landscape-level biodiversity patterns that are important

for understanding macroecology, the broad impacts of

geological events and areas of high conservation prior-

ity (Bermingham & Moritz 1998; Moritz 2002). Thus,

phylogeography provides insights into the processes

involved in the origin and distribution of biodiversity.

Examples of the contributions of phylogeographical

studies to the understanding of evolutionary processes

on large scales were recently reviewed for Europe (Tab-

erlet et al. 1998; Nieto Feliner 2011), North America

(Avise 2000; Soltis et al. 2006; Shafer et al. 2010), New

Zealand (Wallis & Trewick 2009), southern Australia

(Byrne 2008) and Africa (Lorenzen et al. 2012). For

instance, in the northern hemisphere, a large number of

phylogeographical studies facilitated identification of

major Pleistocene refugia, cryptic refugia, demographic

expansion and many other species-/population-level

aspects (Avise 2000; Cook et al. 2001; Lessa et al. 2003;

Soltis et al. 2006; Shafer et al. 2010). This includes suture

zones–areas containing multiple hybrid and contact

zones (Remington 1968; Swenson & Howard 2004). The

number of phylogeographical studies of South America

is comparatively lower, despite it having one of the

highest levels of biodiversity on Earth (Beheregaray

2008; S�ersic et al. 2011). Until 2006, only 6.3% of all

phylogeographical studies published worldwide were

dedicated to organisms from the South American conti-

nent (Beheregaray 2008). The field of phylogeography

has recently blossomed in South America, and as a

result, an increasing number of studies have been pub-

lished. Nevertheless, comparative phylogeographical

studies are still needed. Recent reviews of the phylogeo-

graphical patterns within some specific areas in South

America have been published (e.g. Brazilian Atlantic

Rainforest: Martins 2011; Silva et al. 2012; Amazon:

Antonelli et al. 2010; Aleixo & Rossetti 2007; Pampas

grassland: Fregonezi et al. 2012; Patagonia: S�ersic et al.

2011; Pardi~nas et al. 2011; Albino 2011). However, no

attempt has been made to compare these patterns

across the major regions of the continent.

Geological history and climatic changes in
South America

The structural framework of the continent was formed

by the distribution and interplay of several major

geotectonic units, which include the following classes:

cratons (Guiana, Central Brazilian and Coastal Brazilian

shields), intercratonic basins (Amazonas, Parnaiba, Sao

Francisco and Parana), pericratonic basins (Llanos-

Iquitos-Acre-Beni-Chaco-Pampas plains), nesocratons

(Pampean Ranges, Patagonia and Deseado massifs) and

geosynclines (Andean belts) (Harrington 1962).

The geological isolation and long-term climatic stabil-

ity that have affected the South American continent

would have favoured the gradual accumulation of biodi-

versity over time (Mittelbach et al. 2007). Long periods

of time marked the separation of the continents, which

were associated with episodes of volcanism, uplift and

subsidence of large areas. These are important elements

of the geological history of South America and continue

to occur (Clapperton 1993). The Andean uplift began in

the late Oligocene to early Miocene (about 23 Ma), but

the most intense peak of Andean mountain building

occurred during the late middle Miocene (about 12 Ma)

and early Pliocene (about 4.5 Ma) (Hoorn et al. 2010;

Folguera et al. 2011). This mountain range extends for

almost 9000 km along the western coast of South Amer-

ica. Elevation, particularly in the Andes, is an important

factor for climatic and ecological control in South Amer-

ica (Hoorn et al. 1995). Thus, the Andean uplift greatly

influenced biodiversity organization in South America

(Gentry 1982; Hoorn et al. 1995, 2010; Jørgensen & Le�on-

Y�anez 1999; Antonelli et al. 2010). In their northern and

central reaches, the Andes are quite wide and contain

extensive plateaus, such as the Altiplano, and a number

of major valleys (Folguera et al. 2011). The southern

Andes have been eroded by the Patagonian ice sheet

and are much lower and narrower (Garzione et al. 2008;

Hoorn et al. 2010; Lavina & Fauth 2011). The complex

and dynamic geological history of South America is of

great importance for understanding the origins of the

present-day high biodiversity (Clapperton 1993; De
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Carvalho & Almeida 2010; Nullo & Combina 2011; Ru-

zzante & Rabassa 2011).

Glacial and interglacial periods associated with past

climate changes may also have influenced the dynam-

ics of biodiversity, dramatically altering the landscape

and evolution of South America. Glaciations have

occurred at different time intervals and are influenced

by cyclic variations in the Earth’s orbit, known as Mil-

ankovitch cycles (Bartlein & Prentice 1989; Berger &

Loutre 1989; Zachos et al. 2001). The orbital rhythms

act in combination, producing periodic variations in

the distribution and intensity of sunlight. An alternat-

ing sequence of glacial and interglacial conditions has

characterized the second half of the Quaternary. Palae-

ovegetational reconstructions have recovered drastic

past vegetational changes due to glacial–interglacial

cycles (e.g. Colinvaux et al. 1996; Rull 1999; Behling

2002; Iglesias et al. 2011; Quattrocchio et al. 2011). It

has been argued that Quaternary glaciations may have

resulted in the fragmentation of forest land into

islands in a sea of savannas and/or deserts (refugia),

promoting lineage differentiation (Hooghiemstra & van

der Hammen 1998), which may have promoted specia-

tion and diversification. For example, the refuge theory

of Amazonian speciation was based on the idea that

climatic oscillations occurring during the Pleistocene

promoted allopatric/parapatric speciation (Haffer 1969,

2008; Prance 1973) and might have contributed to the

high biodiversity in this area. However, this idea has

become controversial (Colinvaux et al. 2000; Bush & de

Oliveira 2006) because it has been recognized that

Tertiary Neogene tectonic and palaeogeographical reor-

ganization have also been important drivers of the ori-

gin of Neotropical (Pennington et al. 2004; Hoorn et al.

2010; Rull 2011) and temperate biodiversity (Quiroga

& Premoli 2010; S�ersic et al. 2011) in South America.

Here, we review current phylogeographical knowl-

edge of South America based on a detailed examina-

tion of published articles, discussing the main results

in the light of the current debate concerning the prob-

able agents responsible for the high level of biodiver-

sity and its geographical distribution across the

different biogeographical regions in this continent (Ho-

orn et al. 2010; Antonelli & Sanmartin 2011; Rull 2011;

S�ersic et al. 2011). Specifically, we had the following

goals: (i) to review the current knowledge of phyloge-

ography in South America; (ii) to verify the occurrence

of demographic processes (expansion and contraction)

related to glacial/interglacial climatic oscillations; (iii)

to assess hypothesized refugia types (multiple or

single); and (iv) to discuss the role of geological and

climatic changes during the Tertiary and Quaternary

in shaping the phylogeographical patterns of South

America.

Materials and methods

Literature survey

The database used for this review was compiled by

conducting searches in the Web of Science® (Institute of

Scientific Information, Thomson Scientific). We first

searched articles published from 1987 (date regarded as

the birth of phylogeography as discipline: Avise et al.

1987) to 2011 using two key phrases: ‘phylogeograph*’
and ‘South America’. Because many studies did not

mention ‘South America’, we also searched by each

South American country individually. We have limited

our discussion to organisms that occur mainly in the

South American continent. Thus, we did not consider

studies in which the range of organisms was largely

outside of South America (e.g. Central and North

America, New Zealand, Australia and Antarctica).

Marine organism was not included when their ranges

extended beyond the South American coast. Studies

that covered only a small part of a species geographical

range were also excluded. Studies of invasive species

and Amerindian populations were not considered.

Articles with a purely taxonomic or systematic empha-

sis were also excluded. Additionally, we excluded stud-

ies in which the terms ‘phylogeography’,

‘phylogeographical’ or ‘phylogeographic’ appeared only

in the keywords or title.

Review of South American phylogeographical patterns

For all of the retrieved articles (Table 1), we recorded

the following information: (i) sample taxa, (ii) molecular

markers, (iii) main biome/ecoregion, (iv) inferred

demographic processes (population expansion or

Table 1 Summary of the reviewed studies, including the total

number of papers, total number of species encounters and

number of studies per taxonomic categories

Category No of items

Total of studies 214

Total of taxa 476

Total of studies per taxonomic category

Algae 2

Plant 36

Invertebrate* 29

Fish* 28

Amphibian 20

Reptile 20

Bird 19

Mammal 61

*Note there is one study included in two taxonomic categories,

see Table S2 (Supporting information) for details.
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contraction), (v) hypothesized refugia types (multiple or

single) and (vi) divergence times of the main phylo-

groups. Categorizing studies by biomes or ecoregions

was difficult because many authors have used political

divisions (i.e. countries, states, provinces) instead of

ecological divisions such as biomes, ecosystems or

ecoregions. Because our goal was not to provide a criti-

cal biogeographical review of South America, which

had previously been done by De Carvalho & Almeida

(2010), we used the regionalizations used in each article.

The approximate distribution of major terrestrial South

American biomes/ecoregions adopted in this review is

shown in Fig. 1 (modified from Olson et al. 2001; shape-

file available at (http://www.worldwildlife.org/science/

data/item1875.html). Morrone (2010b) provided a com-

prehensive review of South American regionalizations

and their characteristics.

Given that region, habitat type or latitude may relate

to important palaeoclimatic drivers of diversification,

we first tested for the relationship between climatic

region (temperate vs. tropical/subtropical) and lineage

splitting times by analysis of variance (ANOVA) using the

software SPSS 11.0 (SPSS, Inc., Chicago, IL, USA).

Second, we added organisms (taxonomic groups) as

predictor variables of lineage splitting times to refine

the analysis and identify additional patterns, also using

ANOVA. Third, we used the chi-square test to assess the

strength of the association of glacial/interglacial periods

with forest-dwelling and open-habitat organisms. We

tested the association of population expansion vs. frag-

mentation during glacial and interglacial periods for

forest-dwelling and open-habitat organisms.

Results and discussion

Literature survey

The Web of Science® survey of the literature from 1987

to 2011 identified 323 articles (excluding four reviews)

that focused on South American phylogeography. In

addition, 678 studies were retrieved using country/ter-

ritory names. When used as a keyword, Brazil was the

most listed country with 219 articles, followed by

Argentina with 111, Chile with 79, Peru with 58, Vene-

zuela with 46 and Ecuador with 40; other countries

were listed no more than 30 times (Table S1, Supporting

information). After excluding duplicates, 640 articles

were identified. Focusing on species with a distribution

range primarily encompassing South America and after

the exclusion of articles that did not meet the require-

ments described in the Materials and Methods section,

214 relevant studies were retrieved by our literature

survey (Table S2, Supporting information). Overall, 476

taxa were studied (Table 1). Plants and vertebrates

accounted for 86% of the phylogeographical studies,

with other taxonomic groups comprising the remainder,

including invertebrates (13%) and algae (<1%). Among

plants (a total of 36 articles), angiosperms constituted

the majority (34 articles), compared with only two stud-

ies of gymnosperms. Fabaceae (17%), Nothofagaceae

(12%), Asteraceae (9%), Araucariaceae (6%), Bromelia-

ceae (6%), Clusiaceae (6%), Meliaceae (6%), Proteaceae

(6%) and Solanaceae (6%) were the most represented

plant families. Plant-rich families such as Lauraceae,

Myrtaceae and Melastomataceae were not considered in

these phylogeographical studies. This bias may be

related to the lack of specific molecular markers for use

in population-level studies (Peakall 2007), mainly for

plant families that do not have applied scientific or

commercial uses.

Most studies of invertebrates (a total of 29 articles)

focused on insects (65%), primarily the Culicidae (25%),

Reduviidae (25%) and Formicidae (15%). Moreover,

these concentrated on vectors of human diseases, such

400 km

Amazon
Andes 
Atlantic Forest
Cerrado
Patagonia/Monte Desert
Chaco/Pantanal
Orinoco
Pampas
Caatinga
Chocó
Guiana Highlands 

Fig. 1 Approximate distribution of major terrestrial South

American biomes/ecoregions (modified from Olson et al. 2001)

used in this study. See Morrone (2010b) for detailed revision

regarding differences in the resolution and delimitations of

such biomes/ecoregions available in the literature.
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as Chagas disease (Reduviidae) and malaria (Culicidae).

Crustaceans and molluscs were represented by only

four studies each. Among vertebrates, mammals were

the largest taxonomic group studied, addressed in 61

articles (28%). Of those, 37% were focused on rodents,

and most were performed on multiple species using a

comparative approach (Da Silva & Patton 1998; Costa

2003; Lessa et al. 2010). Among rodents, Cricetidae were

analysed in 54% of the studies, followed by Echimyidae

(23%). The other well-represented mammal groups

included Phyllostomidae (10%), Didelphidae (9%) and

Felidae (7%). Fish were addressed in 13% of the studies

(a total of 28 articles). Galaxiidae species were exam-

ined in 14% of the studies, Characidae (10%), Cichlidae

(7%), Percichthyidae (7%), Sciaenidae (7%) and Trich-

omycteridae (7%). Lizards, snakes, turtles and crocodil-

ians (reptiles) were investigated in 9% of the studies (20

articles), which focused primarily on the Liolaemidae

(30%) and Viperidae (25%). Twenty studies were of

amphibians (9%), primarily the Hylidae (36%), Bufoni-

dae (23%), Leptodactylidae (14%), Cycloramphidae (9%)

and Dendrobatidae (9%). Amphibians were also investi-

gated extensively in comparative phylogeographical

studies, providing strong support for the recovered data

(Carnaval 2002; Carnaval & Bates 2007; Carnaval et al.

2009; Thom�e et al. 2010). Birds were studied in 9% (total

of 19 articles) of the phylogeographical articles; these

concentrated on Dendrocolaptidae (26%), Furnariidae

(21%) and Psittacidae (15%).

These patterns were generally similar to those in

reports from other parts of the globe (Europe: Taberlet

et al. 1998; North America: Soltis et al. 2006; Shafer et al.

2010; New Zealand: Wallis & Trewick 2009; southern

Australia: Byrne 2008). Some differences between the

composition of our literature survey and the review of

Beheregaray (2008), which included the entire southern

hemisphere, might be attributable to the great increase

in phylogeographical studies in South America since

2006, the latest date included in Beheregaray’s report

(see Fig. 2). For instance, 67% of the studies recovered

in our review were conducted from 2007 to 2011.

One possible reason for the disparity in the number

of studies of plants (17%) and animals (82%) is the

well-documented lack of polymorphisms in molecular

markers available for intraspecific-level studies for

plants compared with animals (Schaal & Olsen 2000;

Brunsfeld et al. 2001; Soltis et al. 2006; among others).

Therefore, Sanger sequencing of mitochondrial DNA

(mtDNA) has predominated in phylogeographical stud-

ies in South America (Fig. 3a). Approximately, 78% of

all studies used mtDNA to infer phylogeogra-

phical patterns: 58% of these used only the mtDNA

genome, 15% combined mtDNA and nuDNA (including

sequencing of low-copy nuclear genes, AFLPs or ISSRs)

and 5% combined mtDNA and microsatellite loci. San-

ger sequencing of plastidial genome (cpDNA) regions

was used in 13% of studies, most of which (59%) used

only cpDNA. Four studies combined cpDNA and mi-

crosatellites, and another eighth applied a combination

of cpDNA and nuDNA. Lastly, a small proportion of

articles (3%) referenced other marker combinations. One

study used all three genomes (algae: Tellier et al. 2009);

another used mtDNA, nuDNA and microsatellite loci

(Culver et al. 2000); four applied mtDNA with karyo-

types (Confalonieri et al. 1998; Pellegrino et al. 2005;

Garcia 2006; Bonvicino et al. 2009) or morphological

measures (Puorto et al. 2001; Chaves et al. 2007) to

determine species-level phylogeographical patterns.

Overall, 72% of the studies used only one type of molec-

ular marker.

Although it is now common practice for phylogeogra-

phy studies to use a diverse suite of markers (Toews &

Brelsford 2012), studies from South America did not fol-

low this trend (Fig. 4). While the number of studies has

increased over the years, the proportion that applied

only one molecular marker to those that applied both

uniparental (organellar) and biparental (nuclear) inher-

ited markers has not changed accordingly. This is
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Fig. 2 Number of phylogeographical arti-

cles published between 1987 and 2011 in

which organism distribution ranges

encompass primarily the South American

continent.
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important because the use of only one type of marker

to infer phylogeographical or phylogenetic relationships

may not be sufficient to fully investigate certain taxa

(Avise & Wollenberg 1997), risking generation of a gene

tree that does not represent the true relationships

among taxa (Edwards & Bensch 2009; Toews & Brels-

ford 2012).

Of the 61 studies that used more than one type of

molecular marker, 17 showed discordance between the

uniparental and biparental inherited markers. A range

of South American organisms exhibit stronger phylo-

geographical structure with uniparental than biparental

inherited markers, including algae (Tellier et al. 2009),

plants (Caetano et al. 2008; Collevatti et al. 2009; Palma-

Silva et al. 2009; Tremetsberger et al. 2009; Pinheiro et al.

2011), birds (Cabanne et al. 2008; Caparroz et al. 2009;

Mila et al. 2009), fish (Zemlak et al. 2010) and mammals

(Culver et al. 2000; Eizirik et al. 2001; Tchaicka et al.

2007; Martins et al. 2009; Hollatz et al. 2011). Possible

reasons for discordant patterns between markers

include differences in the dispersal patterns of males

and females (Eizirik et al. 2001; Tchaicka et al. 2007;

Caparroz et al. 2009; Martins et al. 2009; Zemlak et al.

2010; Hollatz et al. 2011); differences between pollen vs.

seed dispersal rates (Caetano et al. 2008; Palma-Silva

et al. 2009; Tremetsberger et al. 2009; Pinheiro et al.

2011); differences in the evolution rates and coalescence

times of nuclear and cytoplasmic markers (Cabanne

et al. 2008; Tellier et al. 2009); and introgressive hybrid-

ization of organellar markers (Dick & Heuertz 2008;

Acosta & Premoli 2010; Palma-Silva et al. 2011).

The importance of evaluating multiple markers from

different genomes in any phylogeographical study is

progressively becoming more evident. This idea is

particularly applicable in South America, due to its

poorly understood and complex historical phylogeo-

graphy. The shift from single to multiple genome

phylogeographical studies will greatly benefit from

whole-genome sequencing technologies. As genomic

approaches become cheaper and sequencing technolo-

gies allow more efficient analysis, surveying different

genomes and markers for population samples of non-

model species will soon become feasible (Ekblom &

Galindo 2010).

The variety of biomes and ecosystems across the

continent is a reflection of the remarkable levels of

biodiversity observed. The delimitation of regions, sub-

regions, dominions and provinces in a continent with

such a complex geological history is a challenging task.

Several authors have proposed biogeographical region-

alization of the continent based on the identified biotic

components (as reviewed by Morrone 2006, 2010a,b).

The complexity of the scenario can be identified by the

high variation in the number of units and subunits pro-

posed: 98 ecoregions and six bioecoregions (Dinerstein

et al. 1995); 44 provinces grouped in two subrealms, 10

regions and eight subregions (Rivas-Mart�ınez & Navar-

ro 1994); 46 provinces, divided into seven subregions,

further grouped in two regions and one transition zone

(Morrone 2006); 26 provinces and six domains (Cabrera

& Willink 1973); 20 provinces grouped in two subre-

gions and seven domains (Ringuelet 1975); 33 centres

(M€uller 1973); 23 domains (Ab’Saber 1977); 13 provinces
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ISSR 
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mtDNA and nuDNA
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Fig. 3 Percentage of phylogeography articles published between 1987 and 2011 according to (a) classes of genetic marker or marker

combinations used (categories are mutually exclusive) and (b) type of environment (see text for details).
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Fig. 4 Phylogeographical studies between 1987 and 2011 show-

ing the proportion per year of those that used a single genome

(black line) vs. multiple genomes (grey line).
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(Fittkau et al. 1969); and two subregions (Kuschel 1969),

among others (for an extensive review, see Morrone

2006, 2010a,b). Despite some differences among the pro-

posed regionalizations, there were certain concordances.

For example, most of the proposals recognized a subdi-

vision between tropical and temperate portions of South

America, with the Neotropical biota occupying the cen-

tre, north and east of South America and the Andean–

Patagonic biota in the south and west of the continent

(Morrone 2006, 2010a,b).

Using the simplest biogeographical subdivision of the

214 studies in our survey, 120 (56%) were performed in

the tropical portion of the continent, 57 (27%) in the

temperate region and 14 (6%) within the subtropical

domains. Only 23 studies (11%) sampled populations

across different climatic regions (Fig. 3b). Overall, our

review covered phylogeographical studies in several

biomes/ecoregions of South America. Almost half of

the studies (47%) sampled only one biome/ecoregion,

39% sampled two or three different biomes/ecoregions

and 13% included more than four biomes/ecoregions.

Of the latter, only one was based on plant species, an

extremely low number compared with those of animals

(20 in total). The number of times that a given biome/

ecoregion was included in a phylogeographical study is

shown in Fig. 5. The most studied biomes/ecoregions

were Amazonia and the Andes, which were investi-

gated in 71 and 68 studies, respectively, followed by

the Brazilian Atlantic Forest (53 studies), Patagonia

and Monte Desert (41 studies), Cerrado (38 studies)

and Chaco/Pantanal (27 studies). Gentry (1982) sug-

gested that the evolutionary patterns of the Amazonia

and Andes regions would explain much of the

richness of the Neotropical domains. In fact, most

phylogeographical studies were concentrated in those

regions, and the patterns of diversification can now

be detailed (Antonelli & Sanmartin 2011, see also

discussion below).

Timing of phylogroup splitting

An appraisal of the literature revealed emerging phylo-

geographical patterns in the biota of South America.

Several studies (125) revealed the presence of deep

intraspecific phylogeographical structure with multiple

lineages (phylogroups). This led us to believe that many

of these could be cryptic species, that is, morphologi-

cally indistinguishable (Bickford et al. 2007). However,

only 13 of these studies discussed possible cases of

cryptic speciation (e.g. Dick et al. 2003; Camargo et al.

2006; Elmer et al. 2007; Fouquet et al. 2007; Morando

et al. 2007; Koscinski et al. 2008; Mirabello & Conn 2008;

Sistrom et al. 2009; Tellier et al. 2009; Garcia et al. 2011;

Piggott et al. 2011). Because we could not evaluate

species’ taxonomic status to determine whether they

were cryptic, further evaluation of the extent of this

phenomenon in South America is necessary.

Deep phylogeographical divisions within taxa suggest

extensive periods of isolation among some constituent

populations of South American species. In instances in

which lineage splits have been dated, a mid-Pleistocene

divergence was indicated for 57% of species (Fig. 6).

Differences in lineage splitting times were not signifi-

cant with regard to climatic region: temperate, tropical

and subtropical (F = 0.943, P = 0.393, Table 2). There

was, however, a significant difference in inferred split-

ting time according to taxonomic group (F = 5.480;

P = 0.000, Table 2). Overall, mammalian, bird, fish,

invertebrate and plant intraspecific phylogroups were

structured mostly during the Pleistocene (Table S2,

Supporting information). In contrast, most herpetofauna

(amphibians and reptiles) underwent an intraspecific
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lineage split much earlier, during the Pliocene and/or

Miocene (Table S2, Supporting information).

It is important to note that earlier lineage splits have

been reported for a substantial amount of studies (43%

of the species, Fig. 6), including several taxonomic

groups dating back to the Pliocene (fish: Ruzzante et al.

2008; herpetofauna: Morando et al. 2008; Avila et al. 2006;

Thom�e et al. 2010; Noonan & Gaucher 2005; Grazziotin

et al. 2006; birds: Mila et al. 2009; Chaves et al. 2007;

mammals: Eizirik et al. 2001; Hoffmann & Baker 2003;

and insects: Solomon et al. 2008), to the Miocene (herpe-

tofauna: Chek et al. 2001; Souza et al. 2003; Pellegrino

et al. 2005; Yoke et al. 2006; Morando et al. 2007; Fitzpa-

trick et al. 2009; Guarnizo et al. 2009; Brunes et al. 2010;

Geurgas & Rodrigues 2010; Breitman et al. 2011; fish:

Sistrom et al. 2009; plants: Cosacov et al. 2010; Garcia

et al. 2011; and insects: Solomon et al. 2008) and even

earlier (Elmer et al. 2007). For instance, Elmer et al.

(2007), in a study of an Amazonian terrestrial leaflitter

frog (Eleutherodactylus ockendeni), reported lineage split-

ting from the mid-Miocene to Oligocene (20–25 Ma).

The chronology of lineage splitting is important for

developing a testable hypothesis because it reveals cau-

sal mechanisms and forces behind diversification pro-

cesses (Rull 2011). Within the Quaternary, the main

environmental shifts have been linked to climatic

changes (temperature and aridity oscillations) and their

potential evolutionary impact on adaptability and/or

migration, whereas the Tertiary was characterized by

significant tectonic and palaeogeographical reorganiza-

tion leading to the creation/alteration of new pathways

and barriers to biotic evolution. The detection of more

ancient lineage divergences in almost half of studies

analysed indicates that several factors may have

contributed to the geographical structure of the popula-

tion-level diversity of South American species. There-

fore, not only Pleistocene Milankovitch cycles but also

earlier orogenic events (i.e. volcanic, tectonic, mountain

uplift, alteration in drainage systems) occurring during

the Miocene and Pliocene likely played an important

role in the population divergence of South American

species (Rull 2011).

Students of biodiversity have discussed the relative

importance of Pleistocene vs. Pliocene/Miocene events

in promoting the diversification of extant South Ameri-

can species (Neotropics: Moritz et al. 2000; Bennett 2004;

Hewitt 1996, 2001; Rull 2006, 2008, 2011; Brunes et al.

2010; Pennington et al. 2004; Werneck et al. 2011; temper-

ate: S�ersic et al. 2011). The idea that climatic oscillations

during the Pleistocene promoted allopatric/parapatric

speciation was the basis of the refuge theory (Haffer

1969, 2008; Prance 1973) and has been the focus of

Table 2 ANOVA of the effects of taxonomic group and climate

region on molecular dating of intraspecific lineage diversifica-

tion in South America

Source of variation

General linear model

d.f. SS MS F P-value

Taxonomic group*

Between groups 6 872.983 145.497 5.480 0.000

Total 96 3262.566

Climate region†

Between groups 2 63.655 31.828 0.943 0.393

Total 97 3269.173

d.f., degrees of freedom; SS, sum of squares; MS, mean square.

*Taxonomic groups: Plants; Invertebrates, Fish, Amphibian,

Reptile, Birds. Algae were not included in this analysis.

†Climate region: temperate, tropical, subtropical.
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(2008).
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much discussion (Bush & de Oliveira 2006). What

seems to be evident, however, is that the marked phylo-

geographical divergence documented in South Ameri-

can studies is suggestive of high levels of undescribed

species diversity and a geographical structure of popu-

lation-level diversity. However, there is no clear overall

pattern indicating that in South America, most species

originated during the Pleistocene, as predicted by the

refuge theory. Instead, both Pleistocene climatic oscilla-

tions and Pliocene/Miocene orogenic events have

contributed to shaping the current diversity and distri-

bution of modern species in both the Neotropical (Bush

1994; Hoorn et al. 1995, 2010; Pennington et al. 2004;

Rull 2006, 2008, 2011; Antonelli & Sanmartin 2011) and

temperate regions (Ruzzante et al. 2006, 2008; Mathiasen

& Premoli 2010; S�ersic et al. 2011).

Although formerly these explanations were consid-

ered mutually exclusive, several phylogeographical

studies support the idea that the complex processes of

diversification in South America were affected by the

interaction of palaeogeographical and palaeoclimatic

forces (Bush 1994; Riddle 1996; Rull 2008). Under this

hypothesis, many species must have begun diversifying

during the Tertiary (Miocene/Pleistocene), perhaps as a

consequence of orogenic events (i.e. Andean uplifts),

achieving their current biodiversity during the Quater-

nary when population structuring and young species

originated under the influence of climatic oscillations

(Rull 2011). For instance, in Liolaemus bibroni, a Patago-

nian lizard, northern and southern phylogroups

diverged in the mid-Miocene (11.5 Ma), southern phylo-

groups during the Pliocene and Pleistocene (5.6–1.4 Ma)

and northern phylogroups in the early Pleistocene (1.5–

2.3 Ma) (Morando et al. 2007). In Rhinella crucifer, a frog

species from the Brazilian Atlantic Forest, the split

between the southern and central/northern clades

occurred during the Pliocene (3.97 Ma), whereas splits

between the northern and central clades and within the

northern clades occurred during the Pleistocene (0.836

and 0.313 Ma, respectively) (Thom�e et al. 2010). In

Calceolaria polyrhiza, a herbaceous plant species from the

Andean and Patagonia regions, the northern and

southern clades diverged during the late Miocene

(12.99–10.33 and 6.85–8.55 Ma, respectively). The esti-

mated time of diversification within the northern clade

was also late Miocene (8.14–10.17 Ma); however, clades

nested within the southern distribution in Patagonia

diverged more recently, during the Pleistocene (1.16–

1.45 Ma) (Cosacov et al. 2010).

It is important to emphasize that the patterns

reported for South America were based mostly on

timing estimation procedures of a single uniparental

marker (i.e. mtDNA or cpDNA; Figs 2a and 3). As dis-

cussed above, genealogies based on a single marker do

not necessarily correspond to the actual species tree

(Pamilo & Nei 1988; Avise & Wollenberg 1997). More-

over, the inference of lineage divergence time from

molecular data has been criticized, mainly because

dating is prone to many types of error (particularly for

those taxa lacking an available fossil record for calibra-

tion). Although recent improvements have increased its

reliability (Rutschmann 2006; Pulquerio & Nichols

2007), molecular dating inferences are highly influenced

by calibration scheme (Sauquet et al. 2012). Hence, the

patterns we report here must be evaluated carefully. As

mentioned previously, further studies of multiple loci

or using a whole-genome sequencing approach and

increasing the intensity of geographical sampling of a

species will provide a more complete picture of the

evolution and diversification of South American biota.

Glacial vs. interglacial periods

A range of phylogeographical studies in South America

have identified multiple refugia (Table S2, Supporting

information),while the contrasting pattern, demographic

expansion from a single refuge, was identified mainly

in mammals from temperate South America (Palma

et al. 2005; Rodriguez-Serrano et al. 2006; Gonzalez-Ittig

et al. 2010; Lessa et al. 2010). The persistence of some

species in multiple refugia localized throughout their

distribution indicates that these species might have

persisted through multiple climatic cycles in heteroge-

neous environments. This pattern highlights the impor-

tance of dynamic evolutionary processes and a mosaic

of habitats in heterogeneous landscapes that allowed

species to persist through changing environmental con-

ditions. Accordingly, recent palaeoecological informa-

tion in the Neotropics indicates that during the

Quaternary, spatial reorganization and persistence in

suitable microrefugia were more frequent than complete

extinctions (Vegas-Vilarrubia et al. 2011). Microrefugia

are small areas with local favourable environmental

features within which small populations can survive

outside their main distribution area (the macrorefu-

gium) protected from unfavourable regional environ-

mental conditions (Rull 2009). Pollen records indicate

that in the southern Andes, ice-free areas might have

facilitated the maintenance of habitat refugia for forest

taxa (Markgraf et al. 1995; Heusser et al. 1999; Heusser

2010). In fact, the persistence of temperate southern

populations of several organisms during glacial periods

has been reported, principally plants (Muellner et al.

2005; Marchelli & Gallo 2006; Allnutt et al. 1999;

Azpilicueta et al. 2009; Jakob et al. 2009; Souto & Premo-

li 2007; Tremetsberger et al. 2009; Arana et al. 2010; Co-

sacov et al. 2010; Mathiasen & Premoli 2010; Premoli

et al. 2010; Vidal-Russell et al. 2011) and vertebrates
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(fish: Zemlak et al. 2008; birds: Gonzalez & Wink 2010;

mammals: Himes et al. 2008). A number of studies

show long-term persistence of such species, including

even populations close to the ice-sheet coverage limit

during the last glacial maximum (LGM) (Jakob et al.

2009; Cosacov et al. 2010; Vianna et al. 2011; references

in S�ersic et al. 2011). The existence of multiple refugia

has also been reported for other parts of the globe,

where the effects of climatic oscillations might have

been of identical intensities to those in South America

(southern Australia: Byrne 2008; southern Europe

peninsulas: Nieto Feliner 2011; Africa: Lorenzen et al.

2012).

Although South American Pleistocene climate

changes have been demonstrated not to be the only

driver of speciation (e.g. Hoorn et al. 2010; Rull 2011),

they have influenced the historical demography and

distribution of some species in South America. In fact,

demographic changes were identified in 58% of the

studies (Table S2, Supporting information). However,

only a fraction (35%) of these studies included an esti-

mate of the timing of such demographic oscillations.

These studies suggested an important interplay between

demographic scenarios and organisms associated with

forest and open vegetation habitats. A significant pro-

portion of forest-dwelling species (87%, d.f. = 1,

v2 = 28.69, P < 0.0001) showed signs of population frag-

mentation during glacial cycles and/or population

expansion during interglacial periods. The geographical

ranges of species associated with forest habitats were

reduced mainly due to the drier conditions during

glacial cycles, which favoured the expansion of grass-

lands and savannas, following the classical model of

tropical refugia (Haffer 1969; Bennett & Provan 2008),

as indicated by palaeovegetation reconstructions (Beh-

ling 2002; Ledru et al. 2005). Forest species associated

with dry tropical forests (Caetano et al. 2008), temperate

forests (Marchelli et al. 1998, 2010; Nunez et al. 2011;

Sallaberry-Pincheira et al. 2011), mountain forests

(Thom�e et al. 2010) and riparian forests (Marquez et al.

2006) accounted for 13% of studies and also indicated

population expansion during interglacial periods and/

or fragmentation during glacial cycles.

For species associated with open vegetation, the

pattern was unclear (v2 = 2.25, d.f. = 1, P = 0.133), as

only 68% of the studies showed population expansion

during glacial cycles and/or fragmentation during

interglacial periods. Species associated with open vegeta-

tion domains seemed to show variable responses to cli-

matic oscillations, with a tendency to expand (Marin

et al. 2008; Jakob et al. 2009; Cosacov et al. 2010), to main-

tain (Rodriguez-Serrano et al. 2006; Pinheiro et al. 2011;

Werneck et al. 2012) or to shrink (Gonzalez et al. 1998; Xu

et al. 2009; Gonzalez & Wink 2010) their geographical

distribution ranges during glacial cycles. These results

highlight the importance of phylogeographical studies

with organisms adapted to xeric habitats, which show a

more variable response to glacial cycles than do forest-

dwelling species. Accordingly, palaeovegetation model-

ling results indicate that dry tropical seasonal forests in

South America were fragmented during the LGM (Wer-

neck et al. 2011), as were tropical humid forests (Carnaval

& Moritz 2008). Moreover, the role of glacial cycles in

generating biotic refugia in nontropical areas of the

southern hemisphere has received little attention (Behe-

regaray 2008; Lessa et al. 2010; S�ersic et al. 2011). Because

only 28% of the studies surveyed focused on species

associated with open vegetation habitats, future studies

should focus on such organisms to better understand the

role of interglacial refuges in the diversification of South

American taxa (Antonelli 2008; Bennett & Provan 2008;

Werneck 2011; Werneck et al. 2011).

Phylogeographical breaks, colonization routes and
dispersal corridors

Postulating the main phylogeographical breaks, coloni-

zation routes and dispersal corridors from the multiple

refugia is challenging, especially considering our lim-

ited knowledge of the phylogeography of South Ameri-

can organisms. Generally, a complex phylogeographical

mosaic of patterns was observed, which was to some

extent species specific. As observed in southern Euro-

pean peninsulas (Nieto Feliner 2011), where the history

of populations indicates persistence rather than

complete extinction (due to drastic events), replicated

patterns should be more scarce than in northern hemi-

spheric regions. For instance, several studies have

shown how diverse ranges shift directions from the

usual latitudinal north–south pattern. Due to the

complex patterns resulting from this scenario, proposal

of general models is difficult. However, we have

attempted to summarize the most common patterns

found.

Rivers as phylogeographical barriers

Rivers have been suggested to play an important role in

shaping biogeographical patterns in South America (Salo

et al. 1986; Rasanen et al. 1987; Ward et al. 2002). The

‘riverine’ hypothesis of diversification suggests that

major rivers act as geographical barriers to dispersal of

terrestrial organisms, limiting gene flow and promoting

allopatric divergence. For example, rivers within the

Amazon basin (Wallace 1852, 1876; Ayres & Clutton-

Brock 1992; Capparella 1992; Hayes & Sewlal 2004) and

the Doce River in southeastern Brazil (Pellegrino et al.

2005; Cabanne et al. 2007; Tchaicka et al. 2007; Ribeiro

© 2012 Blackwell Publishing Ltd

1202 A. C. TURCHETTO-ZOLET ET AL.



et al. 2011) have been reported to be effective barriers

between different species assemblages and populations.

Several studies have, indeed, indicated that major rivers

might have acted as important phylogeographical barri-

ers. The Amazon River and its tributaries are most

frequently reported as representing a historical barrier

to gene flow in a range of organisms including mam-

mals (Leopardus tigrinus: Johnson et al. 1999; Leopardus

pardalis, Leopardus wiedii: Eizirik et al. 1998; Panthera onca:

Eizirik et al. 2001; Callicebus lugens: Casado et al. 2007;

Tapirus terrestris: De Thoisy et al. 2010; Pteronura brasili-

ensis: Pickles et al. 2011), birds (Xiphorhynchus spixii/ele-

gans: Aleixo 2004; Lepidothrix coronata: Cheviron et al.

2005), insects (Charis cleonus: Hall & Harvey 2002; Anoph-

eles darling: Pedro & Sallum 2009; Anophele triannulatus:

Pedro et al. 2010) and frogs (Dendrobates: Symula et al.

2003). In Bol�ıvia, the Magdalena River Valley was identi-

fied as a barrier to dispersal of the western and eastern

clades of the bird Buarremon brunneinucha (Cadena et al.

2007). However, the role of rivers as major drivers of

allopatric diversification in South America has been

challenged by several studies that do not support the

riverine hypothesis (frogs and small mammals: Gascon

et al. 2000; Lougheed et al. 1999; Patton et al. 1994, 2000;

birds: Cadena et al. 2011; insects: Solomon et al. 2008;

Fairley et al. 2002; and reptiles: Vasconcelos et al. 2006,

2008). These data indicate that the population structure

may be an outcome of barriers that are no longer

evident in the landscape (ancient rivers) (Lougheed et al.

1999). Others have suggested a significant impact of

recent Andean uplift on the lowlands in terms of gener-

ating the patterns of diversity along the major rivers in

Amazonia (Patton et al. 1994; Gascon et al. 2000; Turner

et al. 2004) (for ridge barriers, see discussion below).

In southeastern Brazil, studies have pointed to the

Doce River basin as the phylogeographical break for

some species (mammals: Costa 2003; lizards: Pellegrino

et al. 2005; birds: Cabanne et al. 2007, 2008; frogs:

Thom�e et al. 2010; and plants: Ribeiro et al. 2011).

Although this pattern is strongly in agreement with

the historical instability involving the coastal areas

south of the Doce River, as predicted by Carnaval &

Moritz (2008), its role as a real barrier has been

debated (Martins 2011) and even refuted (Colombi

et al. 2010). Because the Doce River basin was severely

affected by marine incursions during the Pleistocene,

the real barrier might not have been the river itself

(Martins 2011). Additionally, contrasting topographies

have been evoked to explain the north/south diversity

split in the Doce River (Silva et al. 2012). The third

largest river in South America, the S~ao Francisco

River, was reported to be a geographical barrier to

populations of the small rodent Calomys expulsus (Do

Nascimento et al. 2011).

In southern South America, other major rivers have

also been reported to act as phylogeographical breaks.

The Plata River basin is the second largest basin in

South America. The Paraguay and Plata River basins

were a significant barrier to dispersal and gene flow for

the cat Leopardus colocolo (Johnson et al. 1999). The

Paran�a River, a tributary of the Plata River basin, sepa-

rates populations of the marsh deer Blastocerus dichoto-

mus (Marquez et al. 2006).

Although the largest rivers in South America are in

tropical and subtropical regions, the role of several

smaller rivers in the temperate region as potential barri-

ers to dispersal was examined, and structured popula-

tions were identified. In Chile, the Maipo, Yeso and

Aconcagua Rivers represent major barriers to the lizard

species Liolaemus monticola (Torres-Perez et al. 2007).

The Maipo River has also been reported to be a

geographical barrier to populations of the snake Philodr-

yas chamissonis (Sallaberry-Pincheira et al. 2011). The

Chubut River in Patagonia has affected gene flow

among populations of the saxicolous mouse Phyllotis

xanthopygus (Kim et al. 1998). The Chico River in Argen-

tina was considered an ancient barrier to populations of

the herbaceous plant Calceolaria polyrhiza (Cosacov et al.

2010) and for the reptile Liolaemus lineomaculatus (Breit-

man et al. 2011). More intensive geographical sampling

of an array of taxa across South America is crucial for

elucidation of the role of major rivers as historical barri-

ers to gene flow.

Phylogeographical patterns of freshwater organisms

For aquatic organisms, biogeographical studies have

indicated the role of geographical isolation across major

South American drainage basins in structuring and gen-

erating biodiversity (as reviewed by Hubert & Renno

2006). Evidences of population genetic divergence

within species occupying the Amazonian River basins

were observed in several fish species (Potamorrhaphis

guianensis: Lovejoy & de Araujo 2000; Prochilodus magda-

lene: Turner et al. 2004; Serrasalmus rhombeus: Hubert

et al. 2007; Nannostomus unifasciatus: Sistrom et al. 2009;

Paracheirodon axelrodi: Cooke et al. 2009); turtles (Podocn-

emis expansa: Pearse et al. 2006); and the Amazonian

River dolphin, a freshwater mammal (Inia: Banguera-

Hinestroza et al. 2002; Hollatz et al. 2011). Hollatz and

colleagues argued that the heterogeneity of the water

environment may be promoting the genetic differentia-

tion observed between populations on both sides of the

Amazon River. Nevertheless, Piggott et al. (2011)

reported high population genetic differentiation, inter-

preted as cryptic speciation, of black-wing hatchet fish

(Carnegiella marthae) in the Rio Negro floodplain in

central Amazonia. An interesting finding of this study
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is the cryptic speciation within a well-connected system

of floodplains with no contemporary barriers that could

lead population divergence. These results indicate that

the diversity of Amazonian organisms is greatly under-

estimated.

Rivers can have important role in influencing popula-

tion structure not only as ecological barriers but also as

dispersal corridors. For instance, one study has identified

the Casiquiare River as a dispersal corridor from the

Amazonian to the Orinoco basins for three peacock

cichlid species (Cichla temensis, Cichla monoculus and

Cichla orinocensis: Willis et al. 2010). However, the role of

the geologically recent Casiquiare corridor in promoting

gene flow between the Amazonian and Orinoco basins

has not been supported for turtle species (Podocnemis ex-

pansa: Pearse et al. 2006; Podocnemis unifilis: Escalona et al.

2009).

In the Guyanas coastal rivers, a divergent lineage of a

freshwater fish Pseudancistrus brevispinis (Cardoso &

Montoya-Burgos 2009) was identified, and the authors

believe that sea level fluctuation during the Pleistocene

could have been responsible for this diversification. For

the catfish Pimelodus albicans (Vergara et al. 2008),

genetic structuring was detected among different sites

of the Plata River basin. The populations of the fresh-

water catfish Trichomycterus areolatus (Unmack et al.

2009) were highly isolated among drainage systems in

Chile. For the Patagonian fish Galaxias platei (Zemlak

et al. 2008), the strong phylogeographical structure

observed was influenced by both the orogeny of the

southern Andes and the glacial cycles of the Pleisto-

cene. A deep phylogenetic structure was reported for

the Patagonian freshwater crab Aegla alacalufi (Xu et al.

2009). The authors believed that Pleistocene glaciations,

drainage isolation, habitat fragmentation and poor

dispersal ability have influenced the patterns of the

population genetic structure of this aquatic species. In

contrast, there was little evidence of population

structure within the Paran�a River in the fish Prochilodus

lineatus (Sivasundar et al. 2001). Additionally, no phylo-

geographical structure was observed by Ruzzante et al.

(2011) for the Patagonian fish Percichthys trucha. This

species appears to have dispersed and mixed across

diverse Patagonian drainages, most likely as a result of

changes in sea level and the extension of the Patagonian

landscape that occurred during the Quaternary.

Ridges as phylogeographical barriers

Ridges and mountain uplifts are well-known mecha-

nisms of geneflow interruption and promote divergence

among populations. Accordingly, evidence of this effect

in a range of taxa from regions around the world is

available (Soltis et al. 2006). Andean uplift was one of

the major drivers of biodiversity organization in South

America (Gentry 1982; Jørgensen & Le�on-Y�anez 1999;

Antonelli et al. 2010; Hoorn et al. 2010). The Andean

Cordillera is a continuous strip that divides South

America east and west, serving as an effective moisture

barrier (Aragon et al. 2011). Cross-Andean disjoint

distributions have been reported for several organisms

(Brower 1994; Zamudio & Greene 1997; Jørgensen &

Le�on-Y�anez 1999; Dick et al. 2003; Weigt et al. 2005;

Trenel et al. 2007; Turchetto-Zolet et al. 2012). These

patterns suggest that under the vicariance hypothesis,

lowland biota might have evolved due to Andean uplift

(Gentry 1982; Raven 1999). High genetic divergence

between populations on either side of the Andes Cordil-

lera, which suggests that differentiation is a result of

long-term geographical isolation, has been reported for

several taxa including plants (Symphonia globulifera: Dick

et al. 2003; Dick & Heuertz 2008; Cyathostegia mathewsii:

Pennington et al. 2010), birds (Lepidothrix coronata:

Cheviron et al. 2005; Adelomyia melanogenys: Chaves

et al. 2007; Glyphorynchus spirurus: Mila et al. 2009), frogs

(Rinella marina: Slade & Moritz 1998; Hypsiboas andinus:

Koscinski et al. 2008), fish (Percichthys and Percilia: Ru-

zzante et al. 2006), butterflies (Heliconious erato: Brower

1994) and mammals (Glossophaga soricina: Ditchfield

2000; Corollia sps: Hoffmann & Baker 2003; Oreailurus

jacobita: Johnson et al. 1998). These studies found genetic

population divergence across the Andes Mountains

during a period of major Andean uplift in the Miocene,

in agreement with the orogeny-driven vicariance

hypothesis. In the wax palm plant (Ceroxylon echinula-

tum), however, an eastern–western population split

occurred more recently, during the Quaternary (Trenel

et al. 2008). Hence, these authors propose cross-Andean

dispersal to be a more plausible explanation of the

observed disjunction than orogeny-driven vicariance.

The cross-Andean dispersal hypothesis is supported

by several other studies of aquatic and terrestrial

species, including fish (Galaxias platei: Zemlak et al.

2008), small mammals (Oligoryzomys longicaudatus:

Palma et al. 2005; Abrothrix olivaceus: Smith et al. 2001;

Rodriguez-Serrano et al. 2006; Dromiciops gliroides: Hi-

mes et al. 2008; Loxodontomys micropus: Canon et al.

2010; Abrothrix longipilis: Lessa et al. 2010), birds (Cyan-

oliseus patagonus: Masello et al. 2011; Adelomyia melanog-

enys: Chaves & Smith 2011), insects (Euglossini: Dick

et al. 2004) and plants (Tristerix corymbosus and

Tristerix aphyllus: Amico & Nickrent 2009). Migration

across the Andean divide was possible in regions

where mountains were not very high, as well as

through continuous forests (Zemlak et al. 2008; Amico

& Nickrent 2009; Masello et al. 2011). For aquatic

organisms, drainages that currently or previously tra-

versed the Andes from the east side have been sug-
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gested as dispersal corridors (Zemlak et al. 2008). A

study of the fish Galaxias maculatus (Zemlak et al.

2010) also indicated that the Chilean Coastal Cordil-

lera might represent an eastern–western dispersal bar-

rier.

South America is a topographically complex conti-

nent, and although Andean uplift is one of the major

events that contributed to biota organization, other

mountain uplifts have also been reported to have acted

as phylogeographical barriers to South American spe-

cies. For example, the Serra do Mar and Mantiqueira

mountain uplifts in southeastern Brazil for a freshwater

turtle during the Pliocene and Miocene (Hydromedusa

maximiliani: Souza et al. 2003), for rats (Trinomys: Lara &

Patton 2000) and freshwater fish (Mimagoniates microl-

epis: Torres & Ribeiro 2009). The Mitaraka archipelago

inselbergs, in French Guiana, represent a strong barrier

to gene flow among Pitcairnia geyskesii populations

(Boisselier-Dubayle et al. 2010).

Conclusions and future perspectives

An increasing number of studies of South American

phylogeography have recently been published. None-

theless, the number remains insufficient, pointing to an

urgent need for more investigations of historical bioge-

ography and phylogeography to assess how species

responded to past changes and to predict how they

might cope with current changes. Comparative studies

of phylogeography on a smaller scale (i.e. a specific

biome/ecoregion) would facilitate the identification of

refugia and contact zones such as those available for

vertebrates and plants from the Patagonian region

(S�ersic et al. 2011), rodents from the Patagonian and

Tierra del Fuego regions (Pardi~nas et al. 2011), squa-

mates from Patagonia (Albino 2011), vertebrates from

the Brazilian Atlantic Forest (Martins 2011; Porto et al.

2012; Silva et al. 2012), plants from Pampas grassland

(Fregonezi et al. 2012) and tetrapods from the Amazonia

region (Aleixo & Rossetti 2007; Antonelli et al. 2010). It

is important to highlight the fact that most of these

recent reviews discuss mainly vertebrate patterns, likely

because this taxonomic category is the most studied in

South America (89% of phylogeographcial studies). In

addition, a greater number of plant (trees and herbs)

and invertebrate species, which show contrasting

dispersal abilities, should be included to generate a

nonbiased picture of biota evolution in South America.

We predict that in the next few years, next-generation

sequencing techniques will solve most of the problems

encountered in plant groups due to the low diversity of

molecular markers, thus facilitating phylogeographical

studies of a broader range of organisms. Phylogeo-

graphical studies of the xeric regions of Cerrado, Chac-

o/Pantanal, Caatinga, Pampas and Orinoco could

provide important information on the demographic

responses of populations adapted to drought stress dur-

ing climatic oscillations because a large amount of the

published data relates to forest-dwelling species. Hence,

there is an urgent need to compile phylogeographical

studies of a wider range of taxonomic groups into a

more regionalized review of comparative phylogeogra-

phy of important South American regions. This will

facilitate more accurate elucidation of phylogeograph-

ical patterns and promote a better understanding of the

origin and maintenance of South American biota.
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