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Summary

1. The long-standing view that biomass growth in trees typically follows a rise-and-fall uni-

modal pattern has been challenged by studies concluding that biomass growth increases with

size even among the largest stems in both closed forests and in open competition-free environ-

ments. We highlight challenges and pitfalls that influence such interpretations.

2. The ability to observe and calibrate biomass change in large stems requires adequate data

regarding these specific stems.

3. Data checking and control procedures can bias estimates of biomass growth and generate

false increases with stem size.

4. It is important to distinguish aggregate and individual-level trends: a failure to do so results

in flawed interpretations.

5. Our assessment of biomass growth in 706 tropical forest stems indicates that individual

biomass growth patterns often plateau for extended periods, with no significant difference in

the number of stems indicating positive and negative trends in all but one of the 14 species.

Nonetheless, when comparing aggregate growth during the most recent five years, 13 out of

our 14 species indicate that biomass growth increases with size even among the largest sizes.

Thus, individual and aggregate patterns of biomass growth with size are distinct.

6. Claims concerning general biomass growth patterns for large trees remain unconvincing.

We suggest how future studies can improve our knowledge of growth patterns in and among

large trees.

Key-words: above-ground biomass, annual growth rings, artefacts, carbon dynamics, ecologi-

cal fallacy, monitoring, ontogeny, repeated-measures, statistical methods and inference

Introduction

The growth behaviour of large trees remains poorly known.

Improved knowledge offers insights into forest ecology and

plant physiology and can advance our understanding of

forest productivity, carbon storage and dynamics. Large

trees are particularly important in carbon sequestration and

timber production (see Clark & Clark 1996; van Rompaey

1997; Lindenmayer, Laurance & Franklin 2012; Slik et al.

2013), as determinants of stand level dynamics (Sheil,

Jennings & Savill 2000), as habitat (Lindenmayer, Laurance

& Franklin 2012; Lutz et al. 2012), as sources of fruit and

seed and as reservoirs of genetic diversity (Sist et al. 2003,

2014). Our limited understanding of tree growth also hin-

ders the interpretation of forest change (Lewis et al. 2009;

Lapenis et al. 2013; Foster, D’Amato & Bradford 2014;

Brienen et al. 2015; van der Sleen et al. 2015).
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Until recently, the long-standing wisdom was that the

typical lifetime increase in biomass of individual trees was

sigmoidal (Assmann 1961; Hyink & Zedaker 1987) with

growth following a ‘rise-and-fall’ unimodal pattern (Van-

clay 1994; Weiskittel et al. 2011). While such behaviour is

established for diameter- and height growth, it is less cer-

tain for biomass growth. Increasing biomass growth in

young trees – the rising section of the curve – is widely

observed. Recent studies have concluded that such

increases continue even in the largest stems (see Sillett

et al. 2010, 2015; Stephenson et al. 2014). We set out to

examine these conclusions.

We describe challenges to identifying and assessing bio-

mass growth trends in and among the largest individuals

of large-stature tree species. The question that motivates

us is whether per-stem biomass growth in large individual

stems declines or increases. Our intention is to identify and

illustrate some of the challenges in assessing patterns in

biomass growth of trees, particularly in large tropical trees.

First, we briefly review why contrasting trends in per-stem

rates of biomass accumulation among the largest trees are

of interest. We then highlight and illustrate specific chal-

lenges from data collection through to interpretation. As

an illustration, we evaluate the lifetime growth trajectories

of 706 individual trees for 14 tropical tree species and com-

pare these to aggregate size–growth patterns within each

species. In the discussion, we consider our current under-

standing of tree growth patterns and describe how future

studies might be improved.

GROWTH IN LARGE STEMS: BACKGROUND

Decreasing biomass growth in the oldest, largest trees has

been widely assumed. Most growth equations used in for-

est sciences, including those used for individual trees, pos-

sess negative terms that reduce growth at large sizes

(Assmann 1961; Prodan 1961; Zeide 1993). Such negative

terms are necessary for representing the slowing in height

and diameter growth that occurs at larger sizes. Empirical

justification for their application to biomass growth in

individual stems seems less apparent. While observations

of declining per-tree volume growth have been docu-

mented, see, for example von Guttenberg (1885), and there

are observations showing a protracted decline in growth

over many years in some larger trees (e.g. Pedersen 1998),

systematic accounts are scarce (e.g. Piper & Fajardo 2011).

Whether the phenomenon itself is also scarce is unclear.

In contrast, recent studies have concluded that biomass

growth increases with tree size. Sillett et al. (2010) assessed

two of the world’s tallest tree species: Sequoia sempervirens

(n = 21) and Eucalyptus regnans (n = 22). They measured

and remeasured each stem at multiple heights after one or

more years and concluded that above-ground wood pro-

duction was greatest in the largest and oldest trees (tree

age, but not growth, was inferred from tree rings). A clo-

sely related study on E. regnans drew comparable conclu-

sions from similar data [n = 27 (Sillett et al. 2015)].

Stephenson et al. (2014) estimated growth from diame-

ter changes on 673 046 stems from 403 tree species mostly

recorded in permanent plots. These diameter changes were

transformed to estimated biomass growth and were then

analysed as an aggregated population for each species

against stem size using segmented regression. Biomass

growth appeared highest among the largest stems in all but

3% of the species examined. Stephenson et al. (2014) also

found ‘published equations for diameter growth rate in the

absence of competition’ for 41 temperate tree species and

highlighted that 35 of these equations indicate increasing

biomass growth with size even at the largest sizes. The

authors concluded that biomass growth continuously

increases with tree size (Stephenson et al. 2014).

Ultimately, trees fail to reach larger sizes because they

die or stop growing. Little is known about these processes.

Evolutionary ecology identifies various trade-offs among

size-dependent costs and benefits (Kohyama 1993; Schwin-

ning & Weiner 1998; Iwasa 2000; Falster & Westoby 2003;

Falster, Moles & Westoby 2008). While observations sup-

port the idea of such trade-offs (Kohyama et al. 2003;

Aubry-Kientz et al. 2013; Thomas et al. 2013; Iida et al.

2014; Visser et al. 2016), they have failed to identify any

fundamental limits to tree size in polycarpic species (Mein-

zer, Lachenbruch & Dawson 2011). Comparisons among

sites and regions suggest the largest sizes that trees can

achieve are influenced by many factors. For example,

climate and soil can explain around 30% of the variation

in humid forest tree height across three continents, with

other location-specific factors accounting for another 30%

(Yang et al. 2016). If fundamental limits are involved, they

should manifest themselves in sufficiently large stems

through mortality and/or declining growth, though the

potentially complex interplay of endogenous and exoge-

nous processes on tree growth and longevity poses chal-

lenges (Lee & Muzika 2014).

Limits to tree size and age have been suggested (reviewed

in, e.g. Meinzer, Lachenbruch & Dawson 2011; Brutovsk�a

et al. 2013). Some, such as genetically based senescence,

have gained little support. Most discussions focus on physi-

ological and energetic explanations (Ryan & Yoder 1997;

Ryan, Phillips & Bond 2006; Pe~nuelas & Munn�e-Bosch

2010; Drake et al. 2011). Even large well illuminated trees

will tend to grow faster if they receive additional light (Gra-

ham et al. 2003) and most forest trees experience diminish-

ing shade with size (Sheil et al. 2006; Prior & Bowman

2014). Thus, tree size, illumination and biomass growth

tend to covary in forests. Size-dependent illumination is

hard to eliminate, but observations outside closed canopy

vegetation may be less affected. Note that a prediction of

increasing biomass growth with increasing size may depend

on whether shading is, or is not, size-dependent.

So why would growth ultimately decline? Informal per-

ceptions of tree vigour indicate that the crowns on the lar-

gest oldest trees are often open and patchy with dieback

long before tree death. Formal observations indicate

declining foliar efficiency, photosynthetic rates and light
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interception (Yoder et al. 1994; Niinemets, Sparrow &

Cescatti 2005; Nock, Caspersen & Thomas 2008; Drake

et al. 2011; Quinn & Thomas 2015), and the proportion of

intercepted energy invested in stem growth declines with

size (Kaufmann & Ryan 1986; Mencuccini et al. 2005;

Thomas 2010).

Nonetheless, canopy area and total-tree leaf area – and

thus implied energy capture – tend to increase as tree size

increases (Niklas & Enquist 2002; Xu, Li & Wang 2014).

Indeed, total-tree leaf area may increase more rapidly than

productivity per unit of leaf area declines – thus allowing

increasing growth.

Although metabolic scaling theory (MST) implies

increasing energy capture and biomass growth with

increasing tree size, it appears of limited use in predicting

tree biomass growth in the largest and oldest trees. MST

relates a plant’s photosynthetic energy capture (P) to stem

mass (M), as P /M3/4, and stem diameter (D), as D /M3/8,

while biomass growth (dM/dt) depends on energy capture,

dM/dt / M3/4 (Enquist et al. 1999). Stephenson et al.

(2014) note that this theory ‘predicts that mass growth rate

should increase continuously with tree size’ and that their

log-transformed growth vs. tree mass data appear to fit the

predictions of MST. The MST authors recognized their the-

ory as a simplification (see discussion in Price, Enquist &

Savage 2007). Single-term power relationships based on

stem diameter fail to capture true biomass size relationships

(Chambers et al. 2001; Chave et al. 2005). Such models can

capture neither how tree height and tree diameter follow dif-

ferent growth trends (Dawkins 1954; Assmann 1970; Pret-

zsch 2009) nor how height can decline in very large stems

(Hickey, Kostoglou & Sargison 2000). When applied to

stand dynamics, MST failed to predict stem size distribu-

tions at the largest stem sizes ‘likely because of non-competi-

tive sources of mortality not included in the model’ (see

legend to fig. 3, p. 7049 in Enquist, West & Brown 2009).

Similarly, MST-derived predictions for size–growth trends

for individual open-grown trees at near-maximum sizes are

lacking. Thus, beyond its own insufficiency, MST offers no

insights into tree biomass growth trends at near-maximum

sizes.

To conclude, there is considerable theoretical and empir-

ical uncertainty regarding how biomass growth might vary

with stem size. Furthermore, given the diversity of tree

species, evolutionary histories and environments, a com-

mon growth pattern is not necessarily expected. Further

research will be required to clarify these issues. Here,

drawing on past studies, we examine some underappreci-

ated challenges and pitfalls of determining biomass growth

trends in large trees.

SCARCE STEMS AND EPHEMERAL PROCESSES

Determining the biomass growth trends of large trees

requires sufficient measurements of such trees. Larger

stems of most tree species become increasingly scarce with

size (de Liocourt 1898; Clark & Kellner 2012). In old-

growth forests, stem densities typically halve with every

10-cm increase in the diameter size limit (Enquist & Niklas

2001; Niklas, Midgley & Rand 2003), implying that we

should not expect one stem larger than half the maximum

size (exceeding 1 m diameter) even if we locate 100 stems

>10 cm diameter. Thus, the largest stems are poorly repre-

sented unless special measures are used to locate them

(Roesch & Van Deusen 2010). Untargeted low percentage

coverage with plots is likely to be inadequate for detecting

the largest stems for most species.

We may also have difficulty detecting large stems in

growth decline because such situations are short-lived.

Many studies show that mortality rates rise when growth

rates decline (e.g. Vanclay 1994; Wyckoff & Clark 2002;

Bigler & Bugmann 2004; R€uger et al. 2011). This is

expected as reduced growth implies reduced vigour, and

whether associated with senescence or not, reduced vigour

implies increased vulnerability to threats such as pests and

pathogens (Gu�erard, Dreyer & Lieutier 2000; Hooper &

Sivasithamparam 2005; Knapp, Soul�e & Maxwell 2013).

Additionally, there is a semantic concern. Unless death is

an instantaneous consequence of an external cause (e.g.

wind), it seems implausible that stems might increase in

growth until death. An ephemeral ‘decline before death’

behaviour may be judged a ‘trivial’ detail and not a ‘true’

trend, but the decline may be protracted (e.g. Pedersen

1998; Dobbertin 2005) – and the generality of these pro-

cesses and their time scales remain unclear. In any case, a

failure to observe growth declines in a small sample of

large trees is insufficient to distinguish if they are brief and

or rare, or absent.

CAL IBRAT IONS: CONVENIENCE VS . CONF IDENCE

Relationships between measured diameter changes and

estimated biomass growth rely on accurate calibration

(Sileshi 2014). Variation in architecture and form, onto-

geny, bark thickness, wood density, damage and rot all

contribute to variation within and among species. Whereas

generalized diameter–biomass relationships are convenient

for estimating the biomass of mixed stands, they are inap-

propriate for inferring subtle behaviours within individual

species and populations (Clark & Kellner 2012; Magna-

bosco Marra et al. 2015). Species-specific calibration errors

may cancel each other out to some extent when general

biomass relationships are used in mixed stands, but the

errors can still be substantial (e.g. Ngomanda et al. 2014).

Such calibration errors can readily dominate implied bio-

mass growth for individual stems and populations.

Similar stems may have very different biomass–diameter

relationships. Wood density can vary substantially in both

radial and vertical dimensions (Wassenberg et al. 2015),

and hollows can be considerable. Density, and hence

implied biomass growth by size, varies within stems of

most species (Wiemann & Williamson 1989; Nock et al.

2009; Williamson & Wiemann 2011; Hietz, Valencia &

Joseph Wright 2013; Sch€uller, Mart�ınez-Ramos & Hietz

© 2016 The Authors. Functional Ecology © 2016 British Ecological Society, Functional Ecology

Biomass growth trends of the largest trees 3

ptr_g
Resaltado



2013; Plourde, Boukili & Chazdon 2015). The wood den-

sity of Liriodendron tulipifera L. increases fourfold as the

stem grows (Wiemann & Williamson 1989). Other species

show decreasing stem wood density with size (Nock et al.

2009), and some are naturally hollow, for example

Cecropiaceae and Caricaceae. These contrasting species-

specific patterns cannot be captured in generalized diame-

ter–biomass relationships and can bias biomass growth

assessments. For example, imagine taking a biomass–diam-

eter function that fits Liriodendron tulipifera and applying

it to species with decreasing wood density with size. The

resulting estimates would see biomass growth as ‘increas-

ing’ even when it is constant. Similarly, a function that fits

a species with decreasing density with size would imply

‘decreasing’ biomass growth in Liriodendron tulipifera even

when it is constant.

Equations for linking biomass to stem dimensions

should not be used outside their range of validity as deter-

mined by calibration (Ishihara et al. 2015). This is a spe-

cial challenge for very large trees as few, if any, such stems

tend to be used in calibration, and increasing size is associ-

ated with increasing variation in stem biomass. This

increased variation reflects buttressing and stem form

(Sheil 1995), the proportion of biomass in tree crowns

(Ploton et al. 2015) and the prevalence of stem damage,

rot and hollows (Remm & L~ohmus 2011). These factors

vary not just by size but by species and location (see, e.g.

Heineman et al. 2015). A majority of larger stems can be

substantially effected by rot in some locations (Whitford

2002). Hollows, rot and damage tend to increase in indi-

vidual stems and can thus reduce net biomass gains; pro-

duction of new wood will be impacted when growing

tissues are lost and damaged (Chambers et al. 2001), and/

or considerable energy is required to sustain good health.

Few large trees are included in calibrations and those that

are may not be representative of the population as a whole

(e.g. regarding the inclusion of broken or unhealthy trees

(Clark & Kellner 2012; Goodman, Phillips & Baker 2013).

For instance, Chave et al. (2005)’s widely used biomass–di-
ameter equations were compiled from various studies but

included only 14 trees of more than 100 cm d.b.h. and

none larger than 200 cm. Indeed, the authors noted that

their models are only ‘valid in the range 5–156 cm for D’

and indicated that their equations appear to overestimate

biomass among the largest stems (Chave et al. 2005). Any

study extrapolating these equations to larger sizes is

unreliable.

Generalized size–biomass equations are approximations

and will always include some errors that may be influen-

tial. Consider the moist forest (volume) equation of Chave

et al. (2005): if the parameters are adjusted by just 1%

(the positive terms increased and the negative terms

reduced), then the rate of volume change with diameter

change on a 2-m-diameter stem increases from 48 to

54 cm3 mm�1 while the first and second differentials with

regard to diameter (that will influence the rate of change

and thus any growth maximum) shift from 0�013 to

0�015 cm3 mm�2 and from �10�7 to �12�1 cm3 mm�3
,

respectively. Hence, we see that small errors (only 1% in

this case) in the constants defining size–biomass relation-

ships can change growth and growth per unit size by 10–
20% in large stems. Such distortions could dwarf genuine

trends. The influence of such biases is case-specific and

cannot be known without extensive calibrations for specific

populations. Furthermore, when the same estimation func-

tion is used for discerning growth patterns in multiple spe-

cies or populations, the resulting estimates lack

independence due to the errors resulting from that func-

tion. In any case, assessments of biomass growth trends in

large stems of one species at one site cannot be robustly

inferred from the study of smaller stems of other species in

other sites.

ERROR, QUAL ITY CONTROL AND B IAS

The evaluation and analysis of tree growth have recog-

nized complexities (Furnival 1961; Hurd 1979; Vanclay

1994; Sheil 1995; Kangas 1996; Williams 1997; Herault

et al. 2011; Bowman et al. 2013). For example, although

logarithmic-transformation is often useful in analysing tree

growth (e.g. Brienen, Zuidema & Mart�ınez-Ramos 2010),

it must be used with caution as it requires removal of neg-

ative biomass growth observations and results in confi-

dence intervals lacking natural units for the quantity of

interest (see also, Packard, Birchard & Boardman 2011).

Here, we shall focus on data correction and quality

control.

The diameter changes assessed in tree growth studies are

typically small and readily distorted by errors (Sheil 1995,

2003; Eastaugh & Hasenauer 2013). Precise measurements,

even when conducted carefully in quick succession, are sel-

dom exactly equal. While impressive consistency is possible

(e.g. Clark, Clark & Oberbauer 2010) and various ways to

account for errors have been developed (e.g. R€uger & Con-

dit 2012), discrepancies cannot be eliminated. The resulting

‘noise’ depends on both the stem (damage, bark shedding,

water status) and the measurements (the path of the tape,

limits to precision and rounding) (Sheil 1995). Such mea-

surement noise generally increases with stem size (Sheil

1995, 1997, 2003), with the largest stems being the most

challenging (Fig. 1). Large stems are sometimes excluded

from analyses due to such problems (e.g. Condit, Hubbell

& Foster 1993). When assessing growth in the largest

stems, we must use these data while recognizing their inac-

curacies. Consider measuring Sillett et al. (2010)’s largest

stem (stem 27) at 20 m above the ground: the tape should

follow the same track around the >6-m circumference. A

different millimetre rounding decision results in a 158 kg

biomass difference: about 20% of this tree’s reported

784 kg annual growth. Larger changes may reflect stem

moisture status (Sheil 2003; Pastur et al. 2007). Longer

measurement intervals can reduce the influence of such

errors; thus, we note that in fig. 5 of Sillett et al. (2010),

the two E. regnans trees (25 & 26) with lowest growth were
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also the only two measured over a longer multiyear period

and are thus evaluated with the least uncertainty. The use

of only one measurement interval to indicate growth also

provides no way to distinguish general trends from the

impacts of climatic and other events – something that

should be possible with longer measurement series (see,

e.g. Clark & Clark 2011).

As inaccurate stem measurements can distort fitted rela-

tionships, so various approaches are used to find and cor-

rect such measurements. Often measurements are compared

with previous observations while still in the field so that any

discrepancies are addressed promptly and cheaply (Vanclay

1991). Implied measurement changes are typically checked

again during computer filing so that less-plausible values

can be identified. Further checks can occur before analysis

to exclude, adjust or correct unlikely values. While some of

these processes may be well defined and documented, some

rely on informal judgement. Such data controls are a dou-

ble-edged sword: removing anomalies but adding bias. A

moderate positive error on a slow growing stem will not

trigger concern, whereas a negative error of similar size on

the same stem indicates shrinkage and is flagged for revi-

sion. While reasonable – negative growth is seldom a true

reflection of biomass changes – this asymmetrical correction

distorts size-related patterns. Consider an error (ɛ) in the

measurement of a true diameter change (DD). For basal

area (BA), the discrepancy increases with stem diameter

(D): that is BA a D(DD + ɛ), where DDD is proportional to

true change and Dɛ is the additional term due to error. As a

stem size increases, both D and the mean magnitude of ɛ
increase, leading to an increasing multiplicative error Dɛ.
As ɛ is more often positive than negative, an increasing vol-

ume growth vs. size relationship results (Fig. 2).

IND IV IDUALS AND AGGREGATES

Depending on context, both aggregate and individual val-

ues may be of interest, but they must not be confused. The

Fig. 1. Precision measurement of large tree

stems is frequently challenging with but-

tressed, winged and flared stems, ladder

access, hollows, loose bark, insect nests, lia-

nas and epiphytic vegetation. Images are

clockwise 1. Australia (Doland Nichols), 2.

Indonesia (Nurul Winarni), 3. Uganda

(Badru Mugerwa), 4. Peru (Benjamin

Drummond), 5. Sarawak (Lan Qie) and 6.

Costa Rica (David Clark).
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error of confusing the characteristics of populations with

those of individuals or subpopulations is sometimes called

an ‘Ecological Fallacy’ in the social sciences with ‘ecologi-

cal’ referring to sample data (Piantadosi, Byar & Green

1988; Pearl 2014). While often subtle in nature, such errors

create a mismatch between a phenomenon of interest and

the explanations for it, which can lead to a restricted or

inadequate appraisal and a flawed understanding. Con-

sider a population of imaginary trees where each grows at

a constant but different rate. Now assume too that likeli-

hood of death per unit time was equal and constant for all

the stems: faster-growing trees will contribute an increas-

ing proportion of (surviving) stems at larger sizes (Fig. 3).

Thus, mortality alone would determine aggregated stem

growth trends. The difference between individual and

aggregate trends requires only that the relative likelihood

of stems achieving a given size varies with individual

growth. We provide a more sophisticated illustration with

unimodal growth curves in the Supporting Information

(see Appendix S1 and Fig. S1).

As a statistical generalization, most stems of most tree

species die before they reach the very largest sizes: the

exceptions have typically lived longer and/or grown faster

than most others (Snyder & Ellner 2016). Thus, aggregate

and individual growth-by-size patterns reflect distinct out-

comes. Observations among forest trees indicate that the

probability of death before reaching a given size is posi-

tively related to the time required to reach it and large

trees have typically grown faster than average while at

smaller sizes (see, e.g. Landis & Peart 2005; Rozendaal

et al. 2010; Brienen, Gloor & Zuidema 2012). This effect is

accentuated because slower-growing trees are typically at

increased risk of mortality per unit of time when compared

to more vigorous stems (Vanclay 1994; Sheil 1995; Wyck-

off & Clark 2002; Bigler & Bugmann 2004; R€uger et al.

2011) and relative differences in growth among stems can

be sustained for decades (Kohyama & Hara 1989; Sheil

1995; Brienen, Zuidema & During 2006; Rozendaal & Zui-

dema 2011). Such differences will be further accentuated as

smaller stems frequently suffer higher mortality than larger

stems, for example during stand dynamics (Muller-Landau

et al. 2006), as a result of damage from falling debris

(Clark & Clark 1991), or due to predation by large animals

(Sheil & Salim 2004) and the impacts of ground fires (van

Nieuwstadt & Sheil 2005). In theory, a reversed trend

could also occur if transition through a size class was more

probable for slower- than for faster-growing stems. Such

processes could perhaps occur when faster growth was a

trade-off against low investment in roots, resulting in

greater vulnerability to drought or to wind storms (Ever-

ham & Brokaw 1996; van Nieuwstadt & Sheil 2005; Webb

et al. 2014; Bennett et al. 2015).

While differences in aggregate and individual-level

growth patterns appear inevitable, it is less obvious

whether a switch from increasing to decreasing biomass

growth is likely. We thus decided to examine these rela-

tionships further.

MEASURED GROWTH TRAJECTORIES OF LARGE TREES

We reasoned that we could clarify and illustrate our con-

cerns about the differences between aggregate and indi-

vidual size–growth relationships by assessing the growth

trajectories of individual trees. For this illustration, we

used tree-ring measurements to analyse how biomass
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growth trends vary with size within individuals and

among stems for 14 species from three sites (see

Table S1) with two generic diameter–biomass functions

(Chave et al. 2005, 2014). We estimated growth in

above-ground biomass using annual rings in 706 large

individual trees: approximately 50 from each species. We

sought 100 trees for each species, but only use the 50 lar-

gest individuals in the analyses presented here (see,

Appendix S2 for additional details). Our primary analy-

ses adapted the piecewise regression approach of

Stephenson et al. (2014) to our data so as to assess bio-

mass growth–size relations in two distinct ways: (i) indi-

vidually and (ii) in aggregate.

Biomass growth trends within stems
(individual-level)

We analysed growth trajectories for individual trees from

estimated annual biomass growth. We then applied piece-

wise regressions for each individual, using 2, 3 or 4 linear

segments. Segment breaks were determined by bootstrap-

ping, and we only considered models with five or more

data points (i.e. a period of 5 years of growth) per seg-

ment. For each stem, we selected the model with the lowest

Akaike Information Criterion value (Akaike 1974); AIC

see, e.g. Fig. S2). Therefore, the AIC determined the num-

ber of segments in the selected model. All analyses were

conducted using R version 3.0.2 (R-Core-Team 2013). The

piecewise regression models were fitted using the R-package

Segmented (Muggeo 2003, 2008).

We noted the slope of the final section of the ‘best’ regres-

sion for each stem. For each of the 14 species in the individ-

ual-level analysis, the resulting slopes were almost equal

proportions of positive and negative (see Fig. 4), with posi-

tive trends in 55�9% of all stems using biomass estimates

from Chave et al. (2005; see Table 1). The median slope of

nine of the 14 species was positive, but the 95% confidence

interval of the median slope included zero in all but one of

the 14 species. The Chave et al. (2014) biomass equa-

tion yielded similar figures (positive in 54�5% of stems and

median slope positive in seven of 14 species). For two spe-

cies, Hura and Afzelia, the median slope of the last segment

changed from positive to negative, but remained close to

zero in each of these cases (Table 1). Thus, we detect no

marked tendency towards increasing biomass growth

among the largest individuals in our study species. An anal-

ogous analysis for basal area growth gave equivalent

results, that is no indication that basal area growth shows

any trend with size within individuals for any of our spe-

cies.

To assess whether the largest stems in the study popu-

lations possessed a different tendency to the rest we also

related the slope of the final section of the best regres-

sion for each species to diameter. We found a signifi-

cantly decreasing slope in biomass growth for seven

species (see Fig. 5). The negative slopes indicates that in

half of our study species, the largest trees tend to have

more negative slopes than do those of somewhat smaller

individuals.

Biomass growth patterns among stems
(aggregate level)

To construct our aggregate-level assessment, we selected

the last five growth rings per individual and calculated the

mean annual biomass growth for these 5 years and again

conducted a segmented regression approach for each spe-

cies using only one growth value per stem. At the aggre-

gate level, estimated biomass growth and size were

positively related even among the largest trees for 13 of

our 14 species with both biomass relationships (Fig. 6,

Table 1). Terminalia was the exception and possessed the

least consistent trend requiring four segments for the

best-fit regression (Fig. 6i).
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Fig. 4. Boxplot of the slopes of the last segment of the piecewise

regression for the individual-level analysis for each species

(n = 706 trees). Note that a few outliers (n = 2) were not shown

for reasons of clarity. (a) Biomass estimates using Chave et al.

(2005) and (b) biomass estimates using Chave et al. (2014).
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To summarize: at the aggregate level, we find that esti-

mated biomass growth in larger stems generally appears

greater than in smaller stems for most species, whereas at

the individual level, such general trends are absent.

Discussion

Accurate assessments and interpretations of growth in the

largest trees require precision and care. There are semantic

problems: what is meant by ‘the largest’ trees, how is

increased illumination with stature accounted for, and how

are shorter- and longer-term declines in growth prior to

death assessed. There are assessment challenges: representa-

tion, calibration, environmental influences and data quality

controls all contribute uncertainties. There are analytical

and inferential pitfalls: notably individual and aggregate

trends are distinct and should not be confused. Accounting

for every problem in every case remains challenging.

So are claims concerning biomass growth trends reli-

able? The problems we have described neither prove nor

disprove that general biomass growth trends occur with

size in populations or individuals, but each problem adds

uncertainty. Our own analyses indicate that the long-

presumed decline in biomass growth among large trees is

hard to detect. Without long-term measurements and

suitable biomass calibrations, conclusions remain tentative,

but growth patterns in at least some large stems appear to

plateau for extended periods, with growth increases or

declines subject to context.

Despite the widespread assumption that biomass

growth ultimately declines at large stem size, studies pro-

viding clear evidence are scarce. One example is Piper &

Fajardo (2011) who examined 10-year-diameter growth

(derived from wood cores) for Nothofagus pumilio of vari-

ous sizes at two sites in Chile. They found a marked rise-

and-fall aggregate pattern in implied basal area growth

with height (and inferred tree age) at both sites that

appear sufficiently marked to indicate that biomass

growth will almost certainly rise and fall although this is

not demonstrated explicitly and trends for individual

stems are not provided. Extended periods of relatively

constant basal area growth with indications of an ulti-

mate decline have been reported in large Douglas-fir

(Pseudotsuga menziesii (Mirb.) Franco) though these

observations have not been calibrated for biomass growth

(Poage & Tappeiner 2002). Other studies that examine

growth prior to death suggest a decline in biomass growth

in individual stems is common and can be extended, but

this has neither been assessed directly nor placed in a

wider population context (Pedersen 1998). Despite the

Table 1. Results of the piecewise regression analysis for individual- and aggregate-level analysis using two biomass estimates (Chave et al.

2005 and Chave et al. 2014). Shown are the median slope coefficients of the last segment in the piecewise regression analysis and the total

percentage of negative slopes for the individual-level analysis. Minimum d.b.h. of the last segment refers to the last breakpoint of the

piecewise regression model, and slope coefficients for the piecewise regression analysis at the population level are shown

Country Species

Biomass from Chave et al. (2005) Biomass from Chave et al. (2014)

Individual-level results Aggregate-level results Individual-level results Aggregate-level results

Median

slope

last segment

piecewise

regression

% negative

slopes

Minimum

dbh last

segment

Slope

of the

last

segment

in the

piecewise

regression

Median

slope

last

segment

piecewise

regression

% negative

slopes

Minimum

dbh last

segment

Slope

of the

last

segment

in the

piecewise

regression

Bolivia Ampelocera ruizii 1.66 38.3 18.71 3.17 0.68 42.6 18.71 1.48

Cariniana ianeirensis �1.33 54.9 75.25 2.87 �0.58 54.9 74.77 1.27

Hura crepitans 1.54 46.9 33.72 4.42 �0.48 53.1 33.72 1.49

Schizolobium

amazonicum

7.64 2.3 23.63 4.71 3.66 2.3 23.63 2.01

Sweetia fruticosa �1.02 55.6 9.27 0.92 �0.68 63.0 9.27 0.38

Cameroon Brachystegia

cynometroides

�0.71 55.7 45.43 4.36 �0.35 52.5 45.43 3.05

Brachystegia

eurycoma

4.93 39.7 93.28 10.45 4.05 34.9 63.91 5.52

Daniellia ogea 4.40 28.8 61.89 6.50 3.42 30.8 61.89 4.10

Terminalia

ivorensis

�2.39 52.8 132.51 �7.86 �1.50 58.5 128.77 �4.34

Thailand Afzelia xylocarpa 1.50 47.1 92.86 9.17 �0.30 52.9 91.68 2.39

Chukrasia tabularis 1.80 41.5 53.71 0.43 0.95 34.0 54.25 0.01

Melia azedarach �4.16 77.8 47.57 1.99 �2.84 77.8 47.57 0.96

Neolitsea obtusifolia 1.33 42.3 23.75 3.11 0.70 46.2 23.75 1.73

Toona ciliata 4.66 19.4 41.26 2.85 3.16 22.6 41.26 1.32
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prevalence of the assumption that biomass growth ulti-

mately declines at large tree sizes, we find no strong

claims that this is generally true nor do we find concrete

examples for either aggregate or individual trends.

In contrast to decreasing biomass growth, several data-

rich studies have made specific claims about increasing

biomass growth. Initially, the claims seem plausible, but as

our review indicates, there is room for doubt and confu-

sion. Despite appearing to focus on individual-level pro-

cesses, all the current studies consider only aggregate (one

value per stem) growth–size patterns. Trends within indi-

vidual stems remain unaddressed and thus uncertain. So

what about the aggregate patterns? For Sillett et al. (2010)

and Sillett et al. (2015), the use of multiple stem measures

reduces some of our concerns about volume calibration

but we remain uncertain about measurement errors and

biomass estimates. Longer census intervals, accounting for

stem turgor, and use of tree-ring data could all improve

confidence. Increasing biomass growth in the world’s lar-

gest tree species would not mean that these patterns are

generally applicable to the largest individuals of other spe-

cies. Although we also see an increase in growth with size

among our stems (though not within them), our trees too

are growing under intense competition and include few of

the largest stems. Inadequate sampling, calibration and

measurement may contribute to these results.
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Stephenson et al. (2014)’s compilation of growth rela-

tionships for 41 tree species grown in open conditions mer-

its attention because, as the authors acknowledge, all their

other results (as with Sillett et al.’s) derive from forest

stands and may simply reflect size-dependent competition.

We note that the open-condition relationships are not a

compilation of open-condition growth observations but

derive from models using a fitted competition term which

was set to zero for the purposes of simulating open

growth. Furthermore, few large trees were used in develop-

ing these relationships, and several lack data points at even

half the maximum diameter of the species in question. The

form of the fitted relationship determines the implied

trends at large sizes. These relationships fall short of prov-

ing biomass growth increase at large sizes. More data con-

cerning biomass growth in large open-grown trees are

needed.

So what should researchers do? We need to stay objec-

tive. We need to understand and assess errors and uncer-

tainties as alternative explanations of any observed

patterns. Whatever trends are detected, whether in individ-

uals or in aggregate, we need to be able to determine how

selection, measurement and estimation procedures and

their associated errors, biases and calibration uncertainties

may have contributed. We need robust observations and

analyses to permit the inferences required. We must

0 10 20 30 40 500
50

10
0

15
0 (a)Ampelocera

Bolivia

0 20 40 60 80 100 1200
50

15
0

25
0

Cariniana (b)

0 50 100 150 2000
20

0
60

0
10

00 Hura (c)

0 10 20 30 40 50 600
10

0
20

0
30

0
40

0

Schizolobium (d)

0 20 40 60 800
50

10
0

15
0

20
0 Sweet ia (e)

M
as

s 
gr

ow
th

 ra
te

(k
g

ye
ar

–1
)

Dbh (cm)

0 50 100 1500
20

0
40

0
60

0 B. cynometroides (f)

0 50 100 150 200 2500
50

0
15

00

B. eurycoma (g)

0 50 100 150 2000
50

0
10

00
15

00
Daniel l ia

(h)

0 50 100 1500
20

0
40

0
60

0
80

0 Terminal ia (i)

Dbh (cm)

0 50 100 1500
10

0
30

0
50

0

Thailand
Afzel ia (j)

0 20 40 60 80 1000
50

15
0

25
0

35
0

Chukrasia (k)

0 20 40 60 80 1000
50

15
0

25
0 Mel ia (l)

0 20 40 600
50

10
0

15
0

20
0 Neol i tsea (m)

0 20 40 60 80 100 1200
20

0
40

0
60

0
80

0

Toona (n)

Dbh (cm)

Cameroon

Fig. 6. Best-fit piecewise regression lines when we assessed biomass growth vs. stem diameter for the 14 study species at the aggregate

level. Biomass growth was calculated over the 5-year period in the interval 2006–2010. Note variation in Y scale. Model selection was

determined by the lowest value for the associated Akaike Information Criterion (AIC).
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distinguish individual and aggregate properties and high-

light when they may be confused.

Tree growth can be assessed in different ways. Each has

limitations: that is, repeated measurements (Ganghofer

1881; Vanclay 1991; Sheil 1995, 2003; Chitra-Tarak et al.

2015); dendrometers (Reineke 1932; Hall 1944; Keeland &

Sharitz 1993; Sheil 2003); and growth rings (von Gutten-

berg 1896; Brienen, Gloor & Zuidema 2012; Nehrbass-

Ahles et al. 2014; Peters et al. 2015). When repeated mea-

surements are used, we encourage long intervals or multi-

ple measurements in series. Measurements implying

negative growth should not be discarded, but all measure-

ments, checks and corrections should be recorded and

archived. Cross-validation through multiple approaches

could improve confidence in results and conclusions. Den-

drometers are reserved for short-term studies and can be

used to help correct for turgor effects (Sheil 2003; Chitra-

Tarak et al. 2015). For longer-term assessments of trends,

simultaneous characterization of individual-based (tree

ring derived) and population-based (plot- and stem-mea-

sure based) growth at the same sites would be valuable.

Further work on tree rings allows evaluation of individ-

ual diameter and volume growth at multiple locations over

each tree’s life span (in open-grown as well as closed forest

conditions). Challenges for those using tree-ring data to

address biomass growth in the tropics include (i) the lim-

ited availability of data, (ii) the lack of distinct rings in

some species, (iii) the rarity of suitable trees, (iv) the

unavailability of such trees for destructive sampling, (v)

the need for calibrated size–biomass relationships, and (vi)

the need to separate environmental influences and develop-

mental changes. We recommend that existing tree-ring

data should be compiled, shared and assessed, sampling

methods and trend analyses can be further developed, and

procedures can be set up to ensure large trees are identified

and prepared for their detailed analysis when they die.

Whatever growth data we work with, calibrations must

be adequate for the populations and resulting inferences

under consideration. A major research programme is

required to provide accurate size–biomass relationships for

study populations.

Development and wider application of alternative tech-

niques may reduce specific uncertainties. For example, ter-

restrial laser scanning may help assess volume (Calders

et al. 2015; Hess et al. 2015), while drilling (Rinn, Schwe-

ingruber & Sch€ar 1996) and other non-destructive methods

can help assess wood density patterns (Nicolotti & Migli-

etta 1998; Leong, Burcham & Fong 2012). Much remains

to be done in the study of large trees. Energy capture,

growth efficiency and form change merit further assess-

ment. Population data on stem damage, rot and pre-death

behaviours are also urgently required.

Conclusions

The biomass growth trends of the largest individual trees

remain uncertain. We highlight challenges and suggest

how they may be solved, avoided or minimized. To claim

general size-related growth patterns and trends among and

within the largest stems requires clear results from the

study of representative populations of the largest stems,

careful treatment of exogenous influences, approaches to

reduce and account for biased measurements, suitable size-

biomass calibrations, and avoidance of statistical pitfalls

and logical errors. Inferences about growth trends in indi-

vidual stems require assessments of individual stems across

multiple periods of growth. Individual and aggregate prop-

erties need to be consistently distinguished. The increasing

availability of long-term repeated observations and tree-

ring measurements will facilitate and encourage the assess-

ment of long-term trends. We must strive to ensure these

efforts are as reliable as possible.
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