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Abstract

The important role of tropical forests in the global carbon cycle makes it imperative to assess changes in their carbon

dynamics for accurate projections of future climate–vegetation feedbacks. Forest monitoring studies conducted over

the past decades have found evidence for both increasing and decreasing growth rates of tropical forest trees. The

limited duration of these studies restrained analyses to decadal scales, and it is still unclear whether growth changes

occurred over longer time scales, as would be expected if CO2-fertilization stimulated tree growth. Furthermore, stud-

ies have so far dealt with changes in biomass gain at forest-stand level, but insights into species-specific growth

changes – that ultimately determine community-level responses – are lacking. Here, we analyse species-specific

growth changes on a centennial scale, using growth data from tree-ring analysis for 13 tree species (~1300 trees), from

three sites distributed across the tropics. We used an established (regional curve standardization) and a new (size-

class isolation) growth-trend detection method and explicitly assessed the influence of biases on the trend detection.

In addition, we assessed whether aggregated trends were present within and across study sites. We found evidence

for decreasing growth rates over time for 8–10 species, whereas increases were noted for two species and one showed

no trend. Additionally, we found evidence for weak aggregated growth decreases at the site in Thailand and when

analysing all sites simultaneously. The observed growth reductions suggest deteriorating growth conditions, perhaps

due to warming. However, other causes cannot be excluded, such as recovery from large-scale disturbances or chang-

ing forest dynamics. Our findings contrast growth patterns that would be expected if elevated CO2 would stimulate

tree growth. These results suggest that commonly assumed growth increases of tropical forests may not occur, which

could lead to erroneous predictions of carbon dynamics of tropical forest under climate change.
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Introduction

Tropical forests form an important element of the glo-

bal carbon cycle. While covering only 7% of the Earth’s

terrestrial surface, they are responsible for one-third of

the terrestrial net primary production and store approx-

imately 40% of all carbon in terrestrial vegetation

(Houghton, 2005). Due to their high storage and pro-

cessing of carbon, changes in net uptake or loss of car-

bon has large implications for the global carbon cycle

(Pan et al., 2011). Shifts in climate, in atmospheric CO2

levels, or in nutrient depositions may influence growth

and mortality rates of trees and alter the dynamics of

tropical forests (Lewis et al., 2009a; Alvarez-Clare et al.,

2013). For instance, decreases in growth rates have been

interpreted to reflect the limiting effect of increased

temperature on growth (Feeley et al., 2007), while

growth increases interpreted to reflect the stimulating

effect of increasing CO2 concentrations (e.g. Phillips

et al., 2008; Lewis et al., 2009a).

Monitoring studies of permanent sample plots (PSP)

have provided valuable insights into the growth and

dynamics of tropical forests at stand level. Evidence on

the climate sensitivity of forest growth in these plots

(Clark et al., 2010) has been used to explain changes in

growth rates, dynamics and biomass accumulation (e.g.

Phillips et al., 2008; Murphy et al., 2013). Yet, such com-

munity-level changes are generated by the aggregate

responses of the tree species that make up the commu-

nity. Species-specific responses may potentially change

the tree community, and understanding stand-level

changes thus requires knowledge on species-specific

shifts in dynamics. The high species diversity of tropi-

cal forests has prevented species-level analyses to be
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conducted in the generally small-sized plots (Phillips

et al., 2008; Lewis et al., 2009b). As a consequence, stud-

ies on species-level responses are sparse in the tropics

(Feeley et al., 2007).

Although PSP studies have provided valuable

insights into changes in tropical forests, these studies

are limited by their relative short duration compared

with the time span of the changes that are assessed:

gradual climatic changes or recovery of forests from

disturbances (e.g. forest fires, hurricanes, wind blow-

downs, etc.; Vlam, 2014) take place at the scale of multi-

ple decades up to centuries. Growth trends detected

from plot studies over relatively short time spans may

thus reflect decadal fluctuations in climatic factors (e.g.

temperature; Feeley et al., 2007) or forest disturbance

cycles (if plots are small; Chambers et al., 2013).

To improve the understanding of tropical forests’

responses to climate change, there is a need for long-

term approaches analysing growth changes.

Tree-ring analysis offers the opportunity to extend

insights into growth changes of individual tree species

to the scale of multiple decades to centuries. In temper-

ate regions, tree-ring analysis has widely been used to

assess effects of climate on tree growth and to analyse

historical growth changes (e.g. Esper et al., 2012; Villal-

ba et al., 2012). In the tropics, tree-ring analysis has only

recently been applied to analyse changes in growth

(Rozendaal et al., 2010; Nock et al., 2011). Tree-ring

analysis usually provides growth data that go back to

the establishment of trees and allows for species-level

analyses of growth changes. It thus has a great potential

to assess historical growth changes and to improve the

understanding of how tropical forests react to climate

change (Bowman et al., 2013; Zuidema et al., 2013).

When working with tree-ring data, however, spurious

growth trends may be induced by the chosen field sam-

pling strategies (Nehrbass-Ahles et al., 2014), by the

choice of trend detection method (Peters et al., 2015) or

due to the nature of tree-ring data (cf. Brienen et al.,

2012a). It is thus imperative to use proper field sam-

pling strategies in tree-ring studies, to choose a reliable

trend detection method and to account for the possible

influence of various biases on trend detection (Bowman

et al., 2013; Nehrbass-Ahles et al., 2014) when evaluat-

ing long-term growth trends using tree rings.

Here, we use tree-ring analysis to assess long-term

growth changes in tropical forest species. We sampled

1262 trees of 13 species from three tropical forests sites

across the tropics: in Bolivia, Cameroon and Thailand.

We addressed the following questions: (i) Are growth

rates changing over time for our study species?; (ii) Is

the detection of growth changes affected by biases?;

and (iii) Do species from the same site and across sites

show similar growth changes?

Growth data for the 13 species were obtained from

tree-ring analysis, and growth trends were analysed for

the last ~150 years. We applied a standardized sam-

pling protocol in the three sites to avoid the influence

of sampling strategy on the trend detection (Nehrbass-

Ahles et al., 2014). Additionally, to ensure robust trend

detection, we applied two trend detection methods: an

established and sensitive method and a new and rather

conservative method (cf. Peters et al., 2015). Finally, we

explicitly evaluated the possible effects of trend detec-

tion biases (Brienen et al., 2012a) on our results.

Material and methods

Study areas and sample collection

We sampled trees from undisturbed tropical forests located in

the three continents: South America (in Bolivia), Africa (in

Cameroon) and South-East Asia (in Thailand). In Bolivia, trees

were collected in the ‘La Chonta’ logging concession, situated

at 15.84°S, 62.85°W, ca. 300 km north-east of Santa Cruz de la

Sierra. The vegetation at La Chonta consists of semi-deciduous

moist forest, on the transition between dry-forest (Chiquitano)

and moist Amazonian forests (Pe~na-Claros et al., 2008). Precip-

itation in the region is unimodal, with an annual average of

1580 mm and a 4-month dry season (with <100 mm rainfall)

from May to September. In Cameroon, samples were collected

inside the Forest Management Unit 11.001 of the logging com-

pany Transformation REEF Cameroon (TRC, 2008). The area is

situated at 5.23°N, 9.10°E, adjacent to the Korup National

park in the south-west region. Vegetation consists of semi-

deciduous lowland rainforest of the Guineo-Congolian type

(Kenfack et al., 2006). Precipitation is also unimodal, with

average annual precipitation around 4100 mm (Nchanji &

Plumptre, 2003) and a 3-month dry season from December to

February. In Thailand, the study site was situated in the

Huai Kha Khaeng Wildlife Sanctuary (HKK), situated at

15.60°N 99.20°E, around 250 km north-west of Bangkok. The

vegetation in HKK consists of semi-deciduous moist forest

(Bunyavejchewin et al., 2009). Precipitation is unimodal, with

an annual average of 1473 mm and a 4- to 6-month dry season

from November to April.

At each study site, we sampled trees of four to five species

(Fig. 1 and Table 1), selected based on the possession of clear

annual growth rings and on their local abundance (i.e. rela-

tively common species). Trees were sampled using a stratified

random approach inside large areas (144–297 ha) of undis-

turbed forest, that is where no previous logging activities had

taken place and not showing signs of major anthropogenic

disturbances. At each large study area, we created a virtual

grid of several 300 9 300 m cells, and at random coordinates

inside each cell, we installed circular plots of ca. 1 ha (radius

of ~56 m) that were located using a GPS device (Garmin GPS-

map 60CSx). Inside these plots, all trees >5 cm diameter at

breast height (dbh, at 130 cm height) of our target species

were sampled. We installed 16–25 plots per study site, distrib-

uted across the entire area, to ensure sample sizes of around
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100 trees per species (Table 1). We also collected samples out-

side the circular plots for some of the species, to include some

large (and presumably old) trees or to ensure sample sizes,

were reached. For two species in Cameroon – Daniellia ogea

and Terminalia ivorensis – we also sampled trees outside the

large study area to increase sample sizes.

In Bolivia and Cameroon, samples were collected inside

logging concessions, allowing for the collection of stem discs

for ~30% of the sampled trees. The remaining samples in Boli-

via and Cameroon, and all samples from Thailand, were col-

lected using 5-mm-diameter increment borers of different

lengths (Suunto, Finland and Hagl€of, Sweden) in three to four

Table 1 Characteristics of the 13 species studied, included are family, shade-tolerance guild (ST = shade-tolerant; PST = partial

shade-tolerant; LLP = long-lived pioneer, definitions cf. Poorter et al. (2006); and leaf phenology (E, evergreen; D = deciduous;

BD = brevi-deciduous)

County Species Family Guild* # Trees Leaf phenology† Annual rings

Bolivia Ampelocera ruizii Ulmaceae ST 91 E Lopez et al. (2012)

Cariniana ianeirensis Lecythidaceae PST 102 D Lopez et al. (2012)

Hura crepitans Euphorbiaceae PST 95 D Lopez et al. (2012)

Sweetia fruticosa Fabaceae LLP 105 BD Brienen & Zuidema (2003)

Cameroon Brachystegia cynometroides Fabaceae PST 122 BD Groenendijk et al. (2014)

Brachystegia eurycoma Fabaceae PST 124 BD Groenendijk et al. (2014)

Daniellia ogea Fabaceae LLP 104 BD Groenendijk et al. (2014)

Terminalia ivorensis Combretaceae LLP 62 D D�etienne et al. (1998)

Thailand Afzelia xylocarpa Fabaceae LLP 100 D Vlam et al. (2014b)

Chukrasia tabularis Meliaceae PST 104 BD Vlam et al. (2014b)

Melia azedarach Meliaceae LLP 89 D Vlam et al. (2014b)

Neolitsea obtusifolia Lauraceae ST 104 E Vlam et al. (2014b)

Toona ciliata Meliaceae LLP 61 D Vlam et al. (2014b)

*Ecological Guilds: Bolivia (Pe~na-Claros et al., 2008), Cameroon (Hawthorne, 1995), Thailand (Baker et al., 2005); definitions cf. Poor-

ter et al. (2006).

†Phenology: Bolivia (Mostacedo et al., 2003), Cameroon (Hawthorne, 1995; Lemmens et al., 2012), Thailand (Williams et al., 2008).

Brachystegia cynometroides

Brachystegia eurycoma

Daniellia ogea

Terminalia ivorensis

Ampelocera ruizii

Cariniana ianeirensis

Hura crepitans

Sweetia fruticosa 

Afzelia xylocarpa

Chukrasia tabularis

Neolitsea obtusifolia

Melia azedarach

Toona ciliata

Fig. 1 Location of study areas and ring structures for the species studied. Wood samples were collected in wet tropical forests (green

area; precipitation >1500 mm yr�1) in three locations (red stars): in Bolivia at the La Chonta forest concession; in Cameroon in the TRC

11.001 logging concession, adjacent to Korup National park; and in Thailand in the Huai Kha Khaeng Wildlife Sanctuary. Growth-ring

boundaries in the wood are indicated with white triangles.
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directions per tree. All samples were taken at 1 m height or

above buttresses or anomalies when present.

Ring measurements

Prior to measurements, samples were air-dried and either cut

(G€artner & Nievergelt, 2010) or polished to increase ring bound-

ary visibility. Ring widths were measured using a LINTAB 6

measuring table and TSAPWin software (Rinntech, Heidelberg,

Germany) or using high-resolution scans (1600–2400 dpi) and

the WinDendro software (Regent Instruments, Quebec,

Canada). Ring widths were measured in three to four different

directions for each tree following standard dendrochronological

approaches (for more details see Groenendijk et al., 2014; Vlam

et al., 2014b). Finally, tree-ring width measurements were con-

verted to cross-sectional area growth (basal area increment,

BAI) as BAI is a meaningful expression of tree functioning, for

example conducting xylem surface (e.g. Mendivelso et al., 2013;

Sterck et al., 2014) and better represents a tree’s biomass growth

(henceforth the term tree growth refers to BAI).

The annual nature of ring formation has been previously

demonstrated for the Bolivian species by Lopez et al. (2012).

For the Cameroonian species, annuality of ring formation for

T. ivorensis was established by D�etienne et al. (1998) and for

the remaining three species assessed through radiocarbon dat-

ing by Groenendijk et al. (2014). Two of the species – Brachyste-

gia eurycoma and D. ogea – showed high-quality dating, while

the third – Brachystegia cynometroides – showed some discrep-

ancies in dating that lead to tree-age underestimations of

about 10% (Groenendijk et al., 2014). For the species from

Thailand, the annual character of ring formation was proven

by Baker et al. (2005), and for the samples used here, Vlam

et al. (2014b) confirmed annuality by building chronologies

and analysing climate–growth relations (Table 1).

We checked the quality and dating of the tree-ring measure-

ments by cross-dating the measured ring series within trees

(i.e. among different radii) and among trees (i.e. among indi-

viduals). Cross-dating measurements within a tree ensure the

same (amount of) rings are measured between the different

radii of an individual and helps in identifying wedging rings

(rings that merge on certain parts of the circumference of the

tree) and ‘false’ ring structures (intra-annual growth varia-

tions). For nearly all 1262 measured trees, internal cross-dating

proved successful, that is variation in ring width for the differ-

ent radii within a tree-matched well, both visually and statisti-

cally. Successful cross-dating among individuals is a strong

indication of the annual character of ring formation and pro-

vides a quality check of the measurements, for example by

synchronizing individual measurements to the ‘average’ sig-

nal (i.e. the chronology). Cross-dating among individuals

proved challenging, and we were only able to build chronolo-

gies for four Thai species (Vlam et al., 2014b) but not for the

Bolivian and Cameroonian species (Groenendijk et al., 2014).

Although dating mistakes were unavoidable, we believe that

the quality of our measurements is high enough to address

our (ecological) research questions (Van Der Sleen et al., 2015),

as lacking chronologies does not mean dating accuracy is low

(Fichtler et al., 2003; Groenendijk et al., 2014), and eventual

shifts in calendar year do not strongly affect trend detection

(Van Der Sleen et al., 2015).

Growth trend detection methods

Detecting long-term growth changes in tree-ring data requires

disentangling the age- or size-dependent trends in growth

from long-term growth changes. Several methods have been

developed for this purpose; however, the detection power and

reliability of these methods vary (Peters et al., 2015) and

method choice may affect the detection of trends. Here, we

applied the well-established regional curve standardization

(RCS) together with the less common size-class isolation (SCI)

methods. The RCS was shown to have a high detection power

and to be reliable when detecting long-term growth trends

(Peters et al., 2015), whereas the SCI is a more conservative

method when detecting trends (i.e. less sensitive), but analyses

trends more directly using raw growth rates. These methods

complement each other and combining them provides robust

results when assessing growth changes (Peters et al., 2015).

In the RCS, an average ontogenetic growth trend for a spe-

cies (the ‘regional curve’, the dashed line under ‘Age/size cor-

rection’; Fig. 2) is calculated and individual tree-ring series

are divided by this average curve (Briffa et al., 1992; Esper

et al., 2003). The regional curve is usually calculated by align-

ing ring widths of all individuals to cambial age (i.e. age from

the pith) and calculating the average expected growth for each

age. For shade-tolerant species or for species showing periods

of growth suppression (e.g. slow growth due to overshadow-

ing), size rather than age is often a better indicator for an indi-

vidual’s ontogenetic stage (King et al., 2005; Nock et al., 2011).

Several of our species were shade tolerant (Table 1) and all

were present in closed canopy forests. Therefore, we calcu-

lated the regional curve using small diameter classes instead

of age (the ‘regional size curve’; cf. Bontemps & Esper, 2011).

We used diameter classes of 0.5 cm and calculated average

growth rates of all individuals in each class (with >10 individ-

uals per class). To describe the relationship between tree size

and growth rate (i.e. the ‘regional curve’), we fitted nonlinear

functions to the average growth rates per size class. For this

purpose, we used four functions commonly applied to

describe size-dependent growth of trees: Chapman-Richards,

Hossfeld, Korf and Weibull (cf. Zeide, 1993). The function that

best described the size – growth relationship for each species,

that is the function with the lowest AIC value – was chosen to

represent the regional curve. We then calculated residual

growth rates for each individual tree by dividing each

growth-year of an individual by the expected growth rate for

its size. Finally, to ensure residuals were calculated for the

same diameter classes as used for the calculation of the regio-

nal curve, we averaged (annual) residual growth rates within

the same 0.5-cm-diameter classes.

In the size-class isolation, growth rates are compared inside

the same size classes for extant small (and thus young) and

extant large (thus old) trees (cf. Landis & Peart, 2005;

Rozendaal et al., 2010). Growth rates of small trees are thus

compared with growth rates of large trees when they were

small (Fig. 2; and see Peters et al., 2015). The SCI assumes that

© 2015 John Wiley & Sons Ltd, Global Change Biology, 21, 3762–3776
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the age/size growth trend does not affect the detection of

long-term trends if analysed within fixed size classes (i.e.

within the same ontogenetic stage). We computed the SCI

using 4-cm-diameter classes. To avoid the effect of single-year

growth variation on the trend detection, we calculated growth

rates as an average BAI of five rings: the year at which a tree

reaches the diameter class (e.g. 4, 8, 12 cm; Fig. 2) and the two

rings prior and after that year. Trends in the SCI are calculated

over raw growth data (in BAI), making this method indepen-

dent of decisions made during curve fitting procedures. How-

ever, due to its lower sample sizes (the unit of measurement is

individual trees instead of individual rings), the power to

detect trends using the SCI is lower than the RCS’ (Peters

et al., 2015).

Analysis of species-level growth trends

We tested for long-term growth trends for each species using

the RCS and the SCI. In the RCS, trends were analysed using

linear and nonparametric tests. Linear trends were tested by

computing Pearson’s correlation coefficients (significance level

P < 0.05) between log-transformed residual growth data and

calendar year (‘Trend analysis’; Fig. 2), whereas the nonpara-

metric tests were performed using Spearman’s rho on the

untransformed RCS residuals (Appendix S1). In the SCI, for

each species, we analysed trends for all size classes simulta-

neously using mixed-effect models, including ‘calendar year’

as fixed factor and ‘size class’ as random factor. We applied

mixed-effect models with random intercept and with random

intercept and slope and tested whether calendar year had a

significant effect on the model. For each test, the most parsi-

monious model was chosen, that is the model yielding the

lowest Akaike’s information criteria (AIC), and we computed

estimated P-values. For these analyses with mixed-effect mod-

els for SCI, we used the natural logarithm of the raw growth

data, to normalize the data and stabilize residual variation.

For the species-specific analyses, we also calculated effect

sizes of the detected trends. Effect sizes were expressed as the

relative linear growth change (expressed in % per decade). For

the RCS trends, effect sizes were calculated as the slope of the

residual growth data, and for the SCI trends, we calculated

effect sizes per species as the average of all slopes detected for

each size class divided by the average growth rate of that class

(for more details see Appendix S2).

Testing for trend detection biases

When analysing growth trends using tree rings, it is impera-

tive to account for several biases (Brienen et al., 2012a; Nehr-

bass-Ahles et al., 2014; Peters et al., 2015). Two biases may

have affected our results: the ‘juvenile selection’ bias

(Rozendaal et al., 2010; Van Der Sleen et al., 2015) and the ‘pre-

death slow-growth’ bias (Brienen et al., 2012a), and we explic-

itly assessed the influence of these biases on the detection of

trends in our data. The juvenile selection bias occurs if large

canopy trees of today were relatively fast growing in the past,

that is slow-growing juvenile trees have a lower chance to

reach maturity than fast growers. This bias may lead to the

detection of growth decreases over time, or may mask growth

increases. To identify the presence of this bias, we performed

the equivalent of a quantile regression on the 25% slowest and

fastest growing juvenile trees (<20 cm dbh) for each species.

The two quantiles, and their (differing) trends, provide addi-

tional information when interpreting the detected trends. The

fastest growing juvenile trees in a population (i.e. the upper

quantile) represent the (maximum) growth potential of a spe-

cies, and a trend in this quantile may reflect changing growth

conditions over time. The slowest growing juveniles (i.e. the

lower quantile) can be used to assess the presence of the juve-

nile selection bias. A negative trend in the lower quantile indi-

cates slow-growing individuals were selectively ‘removed’

from the population further back in time (see for more details

Appendix S3).

To evaluate the effect of the predeath slow-growth bias, we

re-analysed species-level trends after excluding the last

15 years of growth, that is the period over which we assume
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Fig. 2 Schematic overview of the application of the regional curve standardization (RCS) and size-class isolation (SCI) to disentangle

age/size from long-term trends in tree growth. Left columns indicate how the age/size trend (i.e. the ontogenetic signal) is disentan-

gled from long-term growth changes: for the RCS, by dividing individual growth curves by the average age/size trend (dashed line);

for SCI, by analysing trends within size classes (e.g. in class 4 cm, black bar). The second column illustrates how trends are computed:

on residual growth rates for the RCS and on raw rates for the SCI. See Material and methods section for more detailed explanation of

the methods.
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this bias to take place (Wyckoff & Clark, 2002). If negative

trends detected on all data disappear or become positive after

the removal of the last 15 years, this indicates that the pre-

death slow-growth bias may have influenced trend detection

(see for more details Appendix S2).

Growth trends within and across sites

If growth changes are driven by a common external factor,

we expect that all species of a site – or across sites – will

show trends in the same direction. We used linear mixed-

effect models to analyse aggregated trends in growth for

all species from a site. In these models, we included ‘calen-

dar year’ as fixed factor and ‘species’ as random factor. For

the analysis of aggregated trends for all sites, we combined

all data and analysed trends on a similar way as for the

site-level analysis, but nested all random factors further

inside ‘site’. The natural logarithm of residual or raw

growth data was used, to normalize data and stabilize vari-

ation. All linear mixed-effect models were tested with ran-

dom intercept only and with random intercept and slope,

and the most parsimonious model was chosen, that is the

model yielding the lowest Akaike’s information criteria

(AIC). All analyses were performed in R (version 3.0.2; R

Core Team, 2013), using the package NLME (Pinheiro et al.,

2015).

Results

Species-specific trends

We assessed long-term growth changes in tropical for-

ests at three levels: at species level, site level and for all

sites combined. In the species-level analysis using RCS,

12 of the 13 species showed significant changes in (log-

transformed) growth rates over time and one species

(Afzelia xylocarpa) showed no changes (Fig. 3). Two of

these 12 species showed significant growth increases,

whereas for 10 species growth rates decreased over time.

For the Bolivian species, we found growth decreases

for three species (Ampelocera ruizii, Cariniana ianeirensis

and Sweetia fruticosa) and an increase for one (Hura crep-

itans; Fig. 3). The Cameroonian species showed similar

trends: growth decreases in three species (B. eurycoma,

B. cynometroides and T. ivorensis) and a growth

increases for one (D. ogea; Table 2). For the Thai spe-

cies, growth decreases were found for four species

(Chukrasia tabularis, Melia azedarach, Neolitsea obtusifolia

and Toona ciliata) and no growth change for one (A.

xylocarpa; Fig. 3). Results were similar when trends

were computed on the raw residuals (i.e. not log

transformed) using the nonparametric Spearman’s rank

correlation test (Fig. S1).

Detected trends using RCS ranged from significant to

highly significant (P-values from ~0.02 to < 0.001,

Table 2) and the period over which trends were

assessed depended on the longevity of the species anal-

ysed and ranged from ~70 years (for e.g. M. azedarach

and A. ruizii) up to ~250 years (e.g. for D. ogea,

Table 2).

For the species-level analysis with SCI, we applied a

linear mixed-effect model for each species with ‘calen-

dar year’ as fixed and ‘diameter category’ as a random

factor. SCI showed similar trends as the RCS, but with

a lower detection power: trends detected for eight

instead of 10 species (Table 2, Figs S2–S4). Only for one

species – A. ruizii in Bolivia – did the detected trends

not coincide: a growth decrease was found using RCS

and an increase using SCI (Table 2).

Effect sizes of the detected trends (i.e. the % growth

change per decade) varied among species and methods:

using RCS, changes varied between a 8.8% growth

reduction per decade and an increase of 2.2% (Table 2);

and using SCI, changes varied between a 7.7% decrease

and an increase of 7.3% per decade. For 12 of the 13

detected trends, effect size results were consistent

between the two methods (Table 2; Fig. S5).

Analysis of biases

We assessed whether the juvenile selection bias

affected the detection of trends by analysing trends on

the slowest and fastest growth quantiles for juvenile

trees (dbh <20 cm). For most species, the direction of

the trends in the lower quantiles (Fig. 4; Table S1) was

similar to those found when analysing all growth data

(Table 2), indicating the juvenile selection bias does

not have a strong effect on the trends detected. The

only species that showed a possible effect of the juve-

nile selection bias was A. xylocarpa from Thailand. For

this species, the lower quantile showed a negative

trend, whereas trends were not significant in the upper

quantile and in all data (Tables 2 and S1), indicating

that slow-growing individuals were selectively

removed from the data set further back in time. Addi-

tionally, for three species presenting growth reductions

in the analysis of all data – C. ianeirensis, T. ivorensis

and Toona ciliata – trends were not significant in the

quantile analysis (Fig. 4).

To assess whether the ‘predeath slow-growth’ bias

has influenced the species-level results, we re-analysed

all growth trends after removing the last 15 years of

growth (i.e. on years prior to 1985). Removing these

growth years affected the detected trends for four spe-

cies. For two species – H. crepitans in T. ciliata – trends

disappeared, that is, changed from significant to non-

significant (Fig. S7 and Table S2). For another two spe-

cies – S. fruticosa and M. azedarach – trends changed

from negative to positive (Fig. S7, Table S2), indicating

a possible predeath slow-growth bias.
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Fig. 3 Long-term trends in growth for 13 species from three tropical sites, using the regional curve standardization (RCS). Trends com-

puted with Pearson’s correlations between log-transformed standardized growth rates and against calendar year. Solid lines indicate

significant trends in the quantiles, dashed lines nonsignificant trends. Significance levels: *P < 0.05; **P < 0.01; and ***P < 0.001. Note

the varying x-axis. Nonparametric test of trends on the untransformed growth residuals is provided in Supplementary Materials,

Appendix S1.
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Aggregated growth trends per site

To identify whether aggregated growth trends were

present per site, we analysed trends for all species in

each site simultaneously. In Bolivia, species-level

increases and decreases in growth were both detected.

However, when simultaneously analysing trends for all

species, using both the RCS as the SCI, we found no

evidence for aggregated changes in growth rates for the

species of the Bolivian site (i.e. no significant ‘calendar

year’ effect in the linear mixed-effect model). Results

for Cameroon were similar to the Bolivian results:

although species-level growth trends were present, no

aggregated trends were detected among the species

using both detection methods. For Thailand, in four of

the five species, we detected growth decreases. When

analysing for aggregated trends for all Thai, the mixed-

effect model using RCS showed a weak growth

decrease over time (year effect = �0.0041, P = 0.033,

n = 19 860; Table 3). Although significant (P < 0.05),

the model that included the year effect only differed

slightly from the no-trend model in Akaike’s informa-

tion criterion (DAIC = 1.83) and this difference is thus

inconclusive (cf. Burnham et al., 2011; Murtaugh, 2014).

The mixed-effect models using SCI did not detect sig-

nificant trends when analysing all species of the Thai

site simultaneously (Table 3).

Growth trends across sites

To assess whether a common factor (e.g. increasing

temperatures, or CO2 fertilization) is driving growth

changes over all three research sites, we analysed

growth changes for all species from all sites simulta-

neously. Using RCS and the linear mixed-effect model

for all sites, we found a weak reduction in growth over

time (year effect = �0.0027, P = 0.005, df = 65 415;

Table 3). Again, the model including the year effect dif-

fered slightly from the no-trend model (DAIC = 2.80),

indicating that the detected trend was weak (cf. Burn-

ham et al., 2011; Murtaugh, 2014). Furthermore, no

trends were detected in the SCI mixed-effect model for

all sites (Table 3), confirming that the growth reduction

detected using RCS is weak, if at all present.

Discussion

This is one of the first studies to assess species-specific

long-term growth trends in tropical forest trees. We

assessed these changes using tree-ring data from three

sites across the tropics and two trend detection meth-

ods. Of the 13 species analysed, 10 showed growth

decreases over time, two showed growth increases and

for one species no growth changes were detected.

When analysing trends on site level, an aggregated

Table 2 Species-level analysis of long-term trends for the 13 tree species using regional curve standardization (RCS) and size-class

isolation (SCI). Provided are the coefficient of the year effect in the linear (mixed-effect) models for each species, with significant

trends highlighted in bold: red = growth decreases, green = growth increases; effect sizes for each species (as % growth change per

decade); sample size (n); and period of analysis

Study site Species

RCS year

coefficient†
RCS effect

size (%)

Sample

size

Period of

analysis

SCI year

coefficient‡
SCI effect

size (%)

Sample

size

Period of

analysis

Bolivia Ampelocera ruizii �0.134*** �7.2 2304 1937–2010 0.015*** 7.3 341 1945–2009

Cariniana ianeirensis �0.033* �0.5 5202 1874–2010 0.001 0.0 833 1876–2009
Hura crepitans 0.049* 1.4 2725 1894–2010 0.002** 2.1 635 1856–2009
Sweetia fruticosa �0.160*** �3.2 3463 1838–2010 �0.001 �0.7 448 1802–2010

Cameroon Brachystegia

cynometroides

�0.269*** �4.9 8814 1864–2010 �0.008*** �7.7 1367 1870–2010

Brachystegia eurycoma �0.186*** �2.8 7761 1854–2010 �0.001* 1.7 1551 1857–2010
Daniellia ogea 0.216*** 2.2 9693 1756–2010 0.001*** 1.4 1585 1749–2010

Terminalia ivorensis �0.205*** �3.8 5601 1850–2010 �0.003** �3.3 1392 1838–2010
Thailand Afzelia xylocarpa �0.010 0.1 6427 1834–2010 0.000 0.0 1218 1826–2010

Chukrasia tabularis �0.109*** �2.1 4416 1897–2010 �0.001 �0.2 702 1835–2010

Melia azedarach �0.278*** �8.8 2619 1941–2010 �0.007*** �4.5 855 1894–2010
Neolitsea obtusifolia �0.214*** �4.2 3989 1890–2010 �0.002* �1.9 515 1906–2010
Toona ciliata �0.081*** �1.6 2415 1915–2010 �0.001 �1.7 533 1864–2010

†RCS analysis: trends computed with Pearson’s correlations of log-transformed standardized growth rates against calendar year.

Nonparametric analysis of trends provided in Supporting Information.

‡SCI analysis: trends assessed with linear mixed-effect models on log-transformed basal area increment, with ‘calendar year’ as

fixed factor and ‘size class’ as random factor. Significance of trends indicated as: *P < 0.05; **P < 0.01; and ***P < 0.001).
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negative trend was found only for the trees from Thai-

land. Finally, we found an indication for a growth

reduction over time when analysing trends for all

species across the three sites.

Species-specific trends

For the majority of the tree species analysed here (12 of

13), growth rates have changed in the past 70–260 years

and for 10 species growth has declined over time

(Fig. 3). The growth reductions found for many species

suggest that growth conditions have become less

favourable over time. Growth reductions have also

been found in other studies, though for much shorter

periods of time (Feeley et al., 2007), or analysed using

much smaller sample sizes of trees and species (Nock

et al., 2011). In these two studies, growth decreases

were linked to increasing temperatures, which for

Bolivia

−2

−1

0

1

2 Ampelocera ruizii

−2

−1

0

1

2 Cariniana ianeirensis

−2

−1

0

1

2 Hura crepitans

1850 1900 1950 2000

−2

−1

0

1

2 Sweetia fruticosa

R
C

S
 re

si
du

al
 g

ro
w

th
 ra

te
s 

(lo
g 

tra
ns

fo
rm

ed
)

Cameroon

Brachystegia cynometrides

Brachystegia eurycoma

Daniellia ogea

1750 1800 1850 1900 1950 2000

Terminalia ivorensis

Calendar year

−2

−1

0

1

2 Afzelia xylocarpa

Thailand

Chukrasia tabularis

Melia azedarach

Neolitsea obtusifolia

1850 1900 1950 2000

Toona ciliata

Fig. 4 Quantile regression of growth trends of juvenile individuals (< 20 cm dbh) for 13 tropical tree species from three tropical sites.

Trends computed on the 25% fastest (green dots) and 25% slowest growers (blue dots) individuals to assess the effect of the juvenile

selection bias (see Appendix S2). Trends computed using Pearson’s correlations between growth rates (log transformed) and calendar

year. Solid lines indicate significant trends in the quantiles (P < 0.05), and dashed lines nonsignificant trends. Evidence for a juvenile

selection bias was only found for the Thai species Afzelia xylocarpa.

© 2015 John Wiley & Sons Ltd, Global Change Biology, 21, 3762–3776

3770 P. GROENENDIJK et al.



tropical species may already be reaching values limit-

ing for tree growth, especially during the hottest

periods of the day (Doughty & Goulden, 2008).

That growth conditions may become less favourable

is supported by the results of the quantile regressions

(Fig. 4) that suggest a reduction in the growth potential

of most species (i.e. negative trend in the upper quan-

tile). These growth decreases could reflect temperature

increases noted for the study sites (Molua & Lambi,

2006; Seiler et al., 2013). Additionally, several species in

Thailand and Cameroon show weak regeneration (i.e.

an establishment failure) in the last 20–80 years (Vlam,

2014), which also suggest deteriorating growth condi-

tions. Weak or failing regeneration is common in tropi-

cal forests (e.g. Poorter et al., 1996; Groenendijk et al.,

2012; Newbery et al., 2013; Vlam, 2014) and may indeed

reflect changing or fluctuating climatic conditions

(Vlam et al., 2014a). Alternatively, lacking regeneration

may be caused by (reduction in) human-induced dis-

turbances (Pourtier, 1989; Oslisly et al., 2013), by defau-

nation due to bush meat hunting (Abernethy et al.,

2013), may be a particular life-history strategy of a spe-

cies (Newbery et al., 2013) or be caused by (lacking)

large-scale disturbances (Baker et al., 2005). Lacking

regeneration – or regeneration in pulses – may have

large consequences for the detection of trends in studies

based on tree-ring data (Vlam, 2014) as well as in stud-

ies based on permanent sample plots (Chazdon, 2003;

Chave et al., 2008; Muller-Landau, 2009). In tree-ring

data, such age clustering may cause apparent growth

decreases (conditions in the past better than conditions

now), whereas in plot studies, age clustering may

induce apparent increases in biomass, while growth

rates may decrease. If regeneration only occurs after

large-scale disturbances – which are rare in time –
trends in growth may be apparent in plot data that are

induced by the recovery of forests from these distur-

bances (Wagner et al., 2010; Chambers et al., 2013). Dis-

entangling trends caused by changing regeneration

conditions from long-term trends induced by climatic

changes are very challenging, for both tree ring- and

PSP-based studies. However, tree-ring analysis pro-

vides the distribution of tree ages in time, and the clus-

tering thereof is a strong indicator for sporadic or

pulse-like regeneration (Tolera et al., 2013). Also, lack-

ing regeneration does not necessarily mean a growth

reduction: D. ogea showed a growth increase (Table 2)

while lacking regeneration (Vlam, 2014).

Robustness of growth trends results

Detecting trends in tree growth is challenging, irrespec-

tive of working with growth data obtained from PSPs

or from tree-ring measurements (Bowman et al., 2013),

and several biases may erroneously induce the detec-

tion of or mask growth trends. In PSP studies, these

biases may be induced if plots have not been installed

at random locations (Phillips et al., 2004) or by the rela-

tively small size of plots (Chambers et al., 2013). For

tree-ring studies, biases may be induced by sampling

design (Nehrbass-Ahles et al., 2014), by the choice of

trend detection method (Peters et al., 2015) or due to

the nature of growth data (Brienen et al., 2012a; Bow-

man et al., 2013). As we sampled trees randomly in

space and following their size distribution in the forest,

biases caused by sampling design probably did not

affect our results. To avoid the effect of method choice

on the detection of trends, we applied two complemen-

tary growth trend detection methods, for a robust trend

analysis (Peters et al., 2015). Next, we will discuss the

two biases that may have influenced the detection of

trends.

Table 3 Results for the analysis of aggregated trends per site and across sites for the regional curve standardization (RCS) and the

size-class isolation (SCI) methods. We analysed temporal trends in growth using linear mixed-effect models, with ‘calendar year’ as

fixed factor (effect year). In the analysis per site, ‘species’ were included as random effects in the RCS and ‘diameter category’

nested in ‘species’ for the SCI. For the analysis for all sites, these random factors were further nested in ‘site’. Growth data were log-

transformed to normalize variance

Detection method Study site Intercept Effect year Sample size Period of analysis

RCS Bolivia �0.0326 �0.0018 13 694 1838–2010

Cameroon �0.1444 �0.0019 31 869 1756–2010
Thailand �0.0513 �0.0041* 19 866 1834–2010
All sites �0.0743 �0.0027** 65 429 1756–2010

SCI Bolivia 3.1328 0.0037 2257 1802–2010
Cameroon 3.9786 �0.0027 5895 1749–2010
Thailand 3.1136 �0.0020 3823 1826–2010
All sites 3.5853 �0.0008 11 975 1749–2010

Two-tailed significance indicated with *P < 0.05 and **P < 0.01.

© 2015 John Wiley & Sons Ltd, Global Change Biology, 21, 3762–3776

TROPICAL GROWTH TRENDS FROM TREE RINGS 3771



The ‘juvenile selection bias’ may induce the detection

of growth decreases over time or mask growth

increases. We expected this bias to be present mostly for

light-demanding tree species (e.g. the long-lived pio-

neers M. azedarach and T. ivorensis; Table 1) as young

individuals of these species require high light condi-

tions and fast growth to reach maturity. Yet, only for

one species – A. xylocarpa – evidence was found that

slow-growing juveniles in the distant past were

‘removed’ from the data set, that is the lower quantile

showed a growth reduction (Fig. 4). This species, how-

ever, shows a spatial and temporal pattern in regenera-

tion (Vlam et al., 2014a), with two clusters of juvenile

trees back in time (Fig. 4). These regeneration clusters

may hamper assessing the effect of the juvenile selection

bias on the trends. For most of the remaining species,

growth trends in the upper quantiles were similar to the

trends detected on all data, reinforcing the suggestion

that these overall trends were caused by changing

growth conditions and not by the juvenile selection bias.

To assess the presence of the ‘predeath slow-growth’

bias, we tested whether the removal of the last 15 years

of growth caused a change in the detected trend. For

only two species – M. azedarach and S. fruticosa – did

this removal result in a change in trend consistent with

this bias: trends changed from negative to positive after

removing the last 15 growth years (Table S2). For these

species, the predeath slow-growth bias may thus have

induced the growth decreases detected prior to the

removal of the last 15 years. However, due to the rather

short lifespan of for M. azedarach (maximum ~60 years),

sample size reduced considerably after removing the

last 15 years of growth data (from 2619 to 942, Tables 2

and S2). Whether this inversion in the trend for M. az-

edarach was thus caused by the predeath slow-growth

bias or due to the exclusion of a large part of the ‘popu-

lation’ is difficult to ascertain. Individuals of S. fruticosa

may indeed be showing a growth reduction induced by

the predeath slow-growth bias. It is important to ascer-

tain whether this bias takes place and to quantify its

effect. Doing so requires either long-term monitoring of

tree growth and mortality or the sampling and analysis

of tree rings on dead trees, which is difficult in the tro-

pics due to high decomposition rates.

Growth trends within and across sites

In the analysis of aggregated trends per site, only for

the Thai site, we found evidence for consistent growth

changes among different species. The lack in aggre-

gated growth trends in Bolivia and Cameroon suggests

that the growth changes detected for several species in

these sites are not driven by a singular external factor.

On the other hand, the aggregated negative trend

found in the Thai site suggests declining growth condi-

tions for all species. Such growth reductions were also

found in a large-scale (50 ha) monitoring plot adjacent

to our study site (Dong et al., 2012) and using tree-ring

analysis for three of the species also studied here:

Chukrasia tabularis, M. azedarach and T. ciliata (Nock

et al., 2011), though for much smaller sample sizes

(from 14 to 36 trees). These growth changes could be

caused by an external factor (e.g. changing climate) or

be driven by internal dynamics (e.g. disturbances).

Growth of most Thai species analysed here is positively

related to precipitation amount and negatively to tem-

perature (Vlam et al., 2014b). Rising temperatures and

respiration costs, and more frequent El Ni~no-induced

droughts may thus have caused the detected growth

declines (Nock et al., 2011). The hump-shaped age dis-

tributions found for many of the Thai species (Vlam,

2014) support the suggestion of deteriorating growth

conditions in the more recent past (Vlam, 2014). On the

other hand, there is evidence for large-scale distur-

bances in the study site ~250 years ago (Baker et al.,

2005). Forest recovery from such (large-scale) distur-

bances may thus still be driving the (aggregated)

growth reduction detected, perhaps in combination

with climatic changes. Unravelling the causes for these

growth changes and assessing whether growth condi-

tions have indeed changed is challenging and is ham-

pered by the rather short time span covered by the

measurements of tree growth in monitoring plots and

by the short local climate record.

We found evidence for a growth reduction across all

study sites. Although suggesting tropical forests tree

growth has reduced in the past ~150 years, a significant

trend was detected only by one of the methods (i.e. the

RCS) and this trend was weak (DAIC = 2.8; cf. Burn-

ham et al., 2011). Irrespective of detecting a negative

trend – or no trend at all – these results contrast

strongly with the growth increases expected under a

strong CO2 fertilization effect (Lloyd & Farquhar, 2008),

and with several studies that found decadal-scale

increases in forest biomass (Phillips et al., 2008; Lewis

et al., 2009b) and growth rates (Laurance et al., 2004).

Surprisingly, growth did not increase in spite of

increases in intrinsic water-use efficiency over time

being found in trees of 12 of our study species (Nock

et al., 2011; Van Der Sleen et al., 2015a), suggesting that

growth decreased while the photosynthetic efficiency

of trees increased over time. On the other hand, tropical

tree growth is sensitive to temperature (Clark et al.,

2010; Vlam et al., 2014b) and increasing temperatures

may have induced the detected growth decreases (Fee-

ley et al., 2007; Nock et al., 2011). The effects of rising

CO2 concentrations and rising temperatures on growth

could thus cancel each other out. Furthermore, the
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suggested gains in photosynthesis due to the higher

CO2 levels may not be invested in stem growth, as

diameter growth is low on the carbon allocation hierar-

chy of trees (Sala et al., 2012; Richardson et al., 2013).

Alternatively, tree growth might not be carbon limited

in tropical forests, with other nutrients limiting growth

(e.g. phosphorus Lloyd et al., 2001).

Implications and outlook

Tropical forests are as complex as the combination of

all species and their interactions. Understanding how

growth changes occur on the species level thus forms

the basis to understand whether site or forest changes

are taking place. We found species-level growth

changes for most of the species analysed, but we also

found that these changes were not necessarily reflected

in the aggregated trends for the sites. That these results

vary illustrates the importance of assessing trends on

both the levels of species and communities.

Our results showed decreasing growth rates for most

of the species analysed. These growth decreases may

lead to shifts in competition between species, which

may in turn lead to species shifts and to the dominance

of more drought adapted species (e.g. if temperatures

increase; Feeley et al., 2011). These shifts may be

already happening in tropical forests (Laurance et al.,

2004) as suggested by the lacking regeneration for

many our study species (Vlam, 2014). When analysed

for all species together, however, these trends were less

pronounced, with only weak (i.e. nonconclusive) aggre-

gated trends being detected. Still, these results contrast

strongly with the increases in growth of tropical forest

trees found in several studies (Laurance et al., 2004;

Lewis et al., 2009a) and expected under CO2 fertiliza-

tion (Lloyd & Farquhar, 2008). If growth of tropical for-

est trees is indeed decreasing – or at least not changing

– this will have large consequences for the projections

of the carbon dynamics of tropical forests under

increasing ambient CO2 (Huntingford et al., 2013). Cur-

rently, models used to predict vegetation development

under changing climate (e.g. dynamic global vegetation

models) usually assume a CO2 fertilization on the

growth of tropical forests (Sitch et al., 2008; Hunting-

ford et al., 2013), with tropical forests predicted to act

as carbon sinks in the coming century. This widespread

assumption of CO2 fertilization is controversial

(K€orner, 2009) and may not be valid for the species

studied here (Van Der Sleen et al., 2015a). Our results

support the assumption that elevated ambient CO2

does not directly lead to higher tree growth.

Detecting whether changes have or are taking

place in tropical forest growth is challenging (Bowman

et al., 2013), and every method used to assess these

changes – tree-ring analysis, monitoring plots, etc. – has

limitations and biases (Phillips et al., 2004; Brienen

et al., 2012a; Chambers et al., 2013). Understanding the

drivers of these changes is possibly even more chal-

lenging – and arguably even more important – than

only detecting them. We argue that to know whether

and why tropical forests are changing requires an inte-

grative approach (Zuidema et al., 2013) combining

long-term growth data (from tree rings) with field mea-

surements from monitoring plots; (e.g. Lewis et al.,

2009b), carbon flux estimates (e.g. Saleska et al., 2003),

and large-scale experimental studies (e.g. Nepstad

et al., 2007; Tollefson, 2013). Monitoring plots provide

the most complete data on the dynamics and changes

in tropical forests as they include growth, mortality and

regeneration rates, and allow to assess changes in spe-

cies composition (Laurance et al., 2004). Carbon flux

measurements provide large-scale estimates of the car-

bon dynamics and net primary productivity of forests

(e.g. Saleska et al., 2003; Gatti et al., 2014), while large-

scale experimental approaches allow to directly quan-

tify the effects of (predicted) climatic changes on plant

processes and growth (e.g. Nepstad et al., 2007; Cava-

leri et al., 2015). The foreseen CO2-enrichment experi-

ment in the Amazon (Tollefson, 2013) will fulfil an

important knowledge gap on topical forest responses to

higher CO2 concentrations. Tree-ring analysis can pro-

vide a long-term perspective to extrapolate results from

these short-term measurements and experiments to the

scale of centuries. Such integrative approaches have

been applied in temperate forests (Girardin et al., 2008;

Babst et al., 2014; Belmecheri et al., 2014), but are still

lacking in the tropics.

More tree-ring studies are needed in the tropics and

many species throughout the tropics produce annual

rings (Zuidema et al., 2012). Tree-ring analysis provides

the species-specific and long-term growth data neces-

sary to assess changes in tree growth on relevant time

scales. Standardized sampling protocols, analogous to

the existing protocols for sampling plots (e.g. RAIN-

FOR, AfriTRON, CTFS), would greatly increase the

potential of using tree rings to detect and compare

growth changes in forest trees worldwide. In the tro-

pics, further studies should focus on widespread or

dominant species (e.g. ‘hyperdominant’ species; Ter

Steege et al., 2013), of which many produce rings and

that can be sampled in large numbers over large areas.

Additionally, the analysis of stable isotopes in the tree

rings provides additional information on both environ-

mental (Fichtler et al., 2010; Brienen et al., 2012b; Van

Der Sleen et al., 2015b), and physiological processes

(Nock et al., 2011; Van Der Sleen et al., 2015a) that drive

tree growth. Integrated with other methods and com-

bined with the analysis of stable isotopes, well-
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designed tree-ring sampling can provide the missing

and important long-term contextual information that is

needed understand the effect of climatic changes on

tropical tree growth.
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