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Abstract

Tree-ring analysis is often used to assess long-term trends in tree growth. A variety of growth-trend detection meth-

ods (GDMs) exist to disentangle age/size trends in growth from long-term growth changes. However, these detrend-

ing methods strongly differ in approach, with possible implications for their output. Here, we critically evaluate the

consistency, sensitivity, reliability and accuracy of four most widely used GDMs: conservative detrending (CD)

applies mathematical functions to correct for decreasing ring widths with age; basal area correction (BAC) transforms

diameter into basal area growth; regional curve standardization (RCS) detrends individual tree-ring series using aver-

age age/size trends; and size class isolation (SCI) calculates growth trends within separate size classes. First, we eval-

uated whether these GDMs produce consistent results applied to an empirical tree-ring data set of Melia azedarach, a

tropical tree species from Thailand. Three GDMs yielded similar results – a growth decline over time – but the widely

used CD method did not detect any change. Second, we assessed the sensitivity (probability of correct growth-trend

detection), reliability (100% minus probability of detecting false trends) and accuracy (whether the strength of

imposed trends is correctly detected) of these GDMs, by applying them to simulated growth trajectories with differ-

ent imposed trends: no trend, strong trends (�6% and +6% change per decade) and weak trends (�2%, +2%). All

methods except CD, showed high sensitivity, reliability and accuracy to detect strong imposed trends. However,

these were considerably lower in the weak or no-trend scenarios. BAC showed good sensitivity and accuracy, but

low reliability, indicating uncertainty of trend detection using this method. Our study reveals that the choice of GDM

influences results of growth-trend studies. We recommend applying multiple methods when analysing trends and

encourage performing sensitivity and reliability analysis. Finally, we recommend SCI and RCS, as these methods

showed highest reliability to detect long-term growth trends.
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Introduction

Worldwide, forests store and process large quantities of

carbon (Pan et al., 2011). Changes in the growth rates of

forest trees affect their net uptake or loss of carbon and

may therefore have large consequences for the global

carbon cycle (Bonan, 2008). Tree-ring analysis yields

long-term growth data – covering centuries (Koutavas,

2013) to millennia (Salzer et al., 2009; Esper et al., 2012)

– that can be used to detect such growth changes or

trends. Tree-ring analysis has been widely applied for

this purpose on boreal and temperate tree species (e.g.

Briffa et al., 1998; Fritts, 2001; Esper et al., 2010; Villalba

et al., 2012) and more recently, there is an increasing

attention to use this tool for assessing long-term growth

trends in tropical tree species (Rozendaal et al., 2010;

Bowman et al., 2013; Zuidema et al., 2013; van der Sleen

et al., 2014).

Tree-ring series contains information on tree-growth

responses to different drivers that vary on different

time scales (e.g. from years to centuries). Year-to-year

variations in growth rates are often driven by interan-

nual fluctuations in, for instance, precipitation and tem-

perature (Sch€ongart et al., 2006; Subedi & Sharma,

2013), while decadal-scale variations may be induced

by, for instance, responses to changes in light availabil-

ity due to canopy dynamics (Brown & Wu, 2005; Baker

& Bunyavejchewin, 2006). Long-term variations – span-

ning several decades to centuries – may reflect

responses of trees to gradual environmental changes

(e.g. in precipitation, temperature, or CO2 concentra-

tion), but may also reflect age/size dependent trends in

growth (i.e. caused by the ontogenetic development; cf.
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Briffa & Melvin, 2011). Detecting long-term growth

trends using tree rings requires disentangling these

ontogenetic and short-term environmental signals from

changes driven by gradually shifting environmental

conditions. This removal of the age/size trend is also

called standardization (e.g. Fritts, 2001; Briffa & Melvin,

2011) or detrending (e.g. Bontemps & Esper, 2011) of

the tree-ring series.

Over the past decades, various growth-trend detec-

tion methods (henceforth referred to as GDMs) have

been developed to detect environmental growth

changes in tree-ring series and correct for the inherent

age/size trends in growth (cf. Briffa et al., 1998; Esper

et al., 2002; Biondi & Qeadan, 2008). While having simi-

lar aims – correcting for the age/size trend to reveal

externally forced growth responses – GDMs differ lar-

gely in their approach; as illustrated in Fig. 1 for the

four most widely applied GDMs. GDMs correct for the

age/size trends in quite different ways: by detrending

growth of trees using curves that describe the age/size
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Fig. 1 Schematic representation of four growth-trend detection methods (GDM) most commonly used to analyse long-term growth

changes using tree rings: conservative detrending (CD), basal area correction (BAC), regional curve standardization (RCS) and size

class isolation (SCI). The first column indicates how GDMs disentangle the age/size trend (i.e. the ontogenetic signal) from long-term

growth changes. See the Methods section for more detailed explanation of the methods. The second column shows how trends are com-

puted: either on raw or on residual growth rates over time, using Spearman’s rank correlations. The third column represents how we

present detected trends in this study: grey dot = no growth change; green = temporal growth increase; and red = growth decrease.

Results are presented for all trees (i.e. for all measured tree rings) or per size category: small trees = trees 0–27 cm diameter;

medium = 27–54 cm; and large = trees >54 cm diameter.
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trend [conservative detrending (CD) or regional curve

standardization (RCS)], by expressing growth rate in

basal area instead of diameter [basal area correction

(BAC)], or by comparing growth rates inside fixed age

or size classes [size class isolation (SCI)]. Trend analyses

are then performed on the detrended data, on the cor-

rected growth rates, or on the raw growth rates. Given

the large differences in approach between GDMs, it is

pertinent to (1) evaluate whether GDMs yield consistent

output when applied on a single data set, (2) assess the

sensitivity and accuracy of GDMs to detect growth

trends, that is, the probability and strength of correct

trend detection and (3) quantify their reliability, that is,

100% minus the probability that erroneous growth

trends are detected. While individual GDMs have been

evaluated and weaknesses have been noted for several

GDMs (e.g. Esper et al., 2003; Biondi & Qeadan, 2008;

Briffa & Melvin, 2011), only in rare cases have studies

applied and compared multiple GDMs (e.g. Briffa et al.,

1992; Esper et al., 2010; Andreu-Hayles et al., 2011).

A comparative analysis and critical evaluation of the

most commonly used GDMs in tree-ring research are

therefore needed.

Here, we critically evaluate the performance of the

four most widely applied GDMs (shown in Fig. 1). We

first reviewed the available literature on the application

of these GDMs in temperate, boreal, subtropical and

tropical tree-ring studies. Then, we assessed their con-

sistency, sensitivity and reliability using a combination

of measured and simulated growth data. To evaluate

the consistency in results across GDMs, we applied the

four GDMs on tree-ring series from a tropical species

from Thailand. Next, we applied these GDMs on simu-

lated growth data with imposed growth trends to

assess their sensitivity, accuracy and reliability. We

simulated five growth-trend scenarios: two with strong

positive and negative growth trends, two with weak

trends and one with no growth change. Finally, we dis-

cuss differences in sensitivity, accuracy, consistency

and reliability of GDMs and provide recommendations

for GDM choice in tree-ring studies.

Materials and methods

Growth-trend detection methods

We performed a literature review to document which GDMs

are most commonly used in tree-ring studies. Published

papers were collected using Scopus and Google Scholar with

one, or a combination, of the following search terms: tree

rings; dendrochronology; dendroecology; long-term growth

trend; climate change; CO2 fertilization; tree growth; climate–
growth responses; basal area increment (BAI); RCS; age clas-

ses; and CD. We then selected publications in which GDMs

were used and for each publication in this selection we noted

the GDM(s) applied, the period covered by growth-trend

analyses, study species and site, and growth trend(s) detected.

Below, we describe the methods and assumptions of the

four most widely used GDMs: CD, BAC, RCS and SCI. In Fig-

ure 1 we provide a schematic overview of the crucial steps

within the application of each of these GDMs: ‘age/size cor-

rection’ shows how the ontogenetic trend is accounted for in

the raw data; ‘trend analysis’ indicates the chronology con-

struction and regression analysis; and ‘output’ indicates how

we present results of the trend analyses. Over time, several

variations and new methods have been developed to cope

with the (supposed) limitations of each GDM: signal-free stan-

dardization (Melvin & Briffa, 2008), age-band decomposition

(Briffa et al., 2001), C-method standardization (Biondi & Qea-

dan, 2008), or the integration of different methods into mixed-

effect models (e.g. Girardin et al., 2008; Nock et al., 2011).

Although these variations exist, in this study we focus on the

four most widely applied GDMs in their most basal form.

In conservative detrending (henceforth CD), a mathematical

function is fitted to individual ring series (Fig. 1; see ‘age/size

correction’) to account for the decrease in ring width with tree

age (i.e. the ontogeny) and residual growth is then calculated

around these functions. The fitted functions can be (rigid)

splines (e.g. Kienast & Luxmoore, 1988; Andreu-Hayles et al.,

2011) or ‘conservative curves’ (i.e. negative exponential, linear

regression, or horizontal lines; cf. Wang et al., 2006; Koutavas,

2013). Residuals are calculated by dividing measured ring

widths by the fitted function. This method assumes that the

fitted functions describe the decrease in ring width with age of

each individual, while fully or partially maintaining the long-

term growth trends. Long-term growth trends are then calcu-

lated over the residual chronology (the average residual per

year) and related to calendar year (Fig. 1, see ‘trend analysis’).

In the BAC, the age/size trend is removed by converting

diameter growth (in cm yr�1) to BAI (cm2 yr�1; Fig. 1). This

method assumes that growth in BAI shows no trend in mature

trees, contrary to diameter growth that often shows decreases

with increasing tree size (Mart�ınez-Vilalta et al., 2008; Silva

et al., 2010). For each tree, BAI is calculated and growth trends

in time are computed over the BAI chronology (Fig. 1).

In the RCS, an average age/size trend is calculated to

describe the ontogeny, that is, the ‘regional curve’, and indi-

vidual tree-ring series are then divided by this average curve

(cf. Esper et al., 2003; Cole et al., 2010). To establish the regio-

nal curve, ring widths of all individuals are first aligned to

cambial age (years from the pith; Fig. 1, see age/size correc-

tion) and average growth rates are calculated for each age. A

mathematical smoothing function is fitted through these aver-

ages per age to describe the relationship between growth and

age (i.e. the regional curve). Ring widths of individual trees

are then divided by the expected growth for each cambial age.

This process assumes that the age/size trend of the species is

realistically described by the tree-ring series and that the

regional curve is independent from long-term growth trends

induced by environmental changes. Temporal trends in

growth are calculated over the residual chronology, related to

calendar year (Fig. 1, see ‘trend analysis’).

© 2014 John Wiley & Sons Ltd, Global Change Biology, 21, 2040–2054
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In the SCI, the age/size trend in growth is not accounted

for by curve fitting or data transformations. Instead, growth

trends are analysed directly within an ontogenetic stage, that

is within the same age or size classes for extant large/old trees

and extant small/young trees (Landis & Peart, 2005; Ro-

zendaal et al., 2010; van der Sleen et al., 2014). Growth of small

trees is thus compared with growth of large trees when they

were small (Fig. 1, see ‘age/size correction’). For instance,

growth rates at a diameter of 12 cm can be compared between

extant small and extant large trees and related to their corre-

sponding calendar years to evaluate growth-changes over

time (e.g. Rozendaal et al., 2010; Zuidema et al., 2011; Fig. 1,

see ‘trend analysis’). This method assumes that trees within a

size class present similar growth rates and comparing growth

within a size class thus removes the effect of the age/size

trend. Trends are calculated over the raw growth data, in

diameter growth or BAI, related to calendar year (Fig. 1, see

‘trend analysis’).

Empirical tree-ring series: Melia azedarach

We applied the four GDMs on tree-ring series for M. azed-

arach A. Juss (Meliaceae, henceforth called Melia) to evaluate

the consistency of results between methods. Melia is a decid-

uous, long-lived pioneer (up to 120 years) known to form

conspicuous and cross-datable annual rings (Vlam et al.,

2014b). We collected increment cores of 90 Melia trees (three

to four cores per tree) in the Huai Kha Khaeng Wildlife

Sanctuary, west-central Thailand (between 15�500 to 16�000N
and 99�000 to 99�280E), in an undisturbed and unlogged area

of the forest. Core surfaces were prepared, scanned at

1600 dpi with a flatbed scanner (Epson Expression 10000 XL,

Epson America Inc., Long Beach, CA, USA), and ring widths

were measured using WINDENDRO (version 2009a Regular,

Regent Instruments Canada Inc., Quebec, Canada). Average

ring widths for the different radii were converted to diame-

ter increment prior to trend analysis. More detailed descrip-

tions of the study site, sampling methods and ring

measurement procedures are given in Vlam et al. (2014b)

and in Appendix S1.

Simulated tree-ring series

We simulated virtual growth trajectories that mimicked the

growth characteristics of Melia, to allow for comparison of

GDM outputs between measured and simulated data. Individ-

ual tree-ring series were simulated based on the following

variables for Melia: the age trend in BAI, response to annual

climatic variation and the temporal autocorrelation of tree

growth. In addition, we included stochastic variation in the

tree-growth simulations. A constant annual mortality chance

of 1% was applied randomly for all simulated trees, indepen-

dent of size class. Virtual tree-ring series were simulated for a

period of 108 years (from 1901 to 2009). Every year, 300 new

individuals were ‘recruited’ (at 1 cm diameter), thus creating

a large amount of surviving series (>10 000) in the year of

‘sampling’ (i.e. in 2009). A full description of the tree-growth

model is included in Appendix S2.

We ran five different simulations, applying a gradient of

imposed growth trends per decade: strong (�6%) and weak

(�2%) growth decreases, no growth trends and weak (+2%) to

strong (+6%) growth increases. In the weak trend simulations,

we imposed linear growth trends of 0.002 per year in both

directions (i.e. a 2% change per decade), and in the strong

trends, we imposed growth trends of 0.006 per year (6%

change per decade). These growth trends were chosen as they

resemble changes reported for permanent sample plots in

tropical forests (cf. Lewis et al., 2009). The no-trend simula-

tions contained no growth changes, as none of the input val-

ues showed trends over time. All simulations were performed

in MATLAB v8.1 (The MathWorks Inc., Natick, MA, USA).

From the >10 000 surviving simulated tree-ring series, we

created a database of 100 series randomly selected to be analy-

sed for trends using the four GDMs. We chose this sample size

as it is approximately the size of the empirical Melia data set

and similar to that of many (tropical) tree-ring studies. For

every growth-trend scenario, we created a fixed random selec-

tion of trees and applied all GDMs to detect trends on this

selection. By repeating this random selection 100 times, we

were able to assess the sensitivity of each method, that is, the

percentage of correct trend detections.

We also assessed the reliability, accuracy and consistency in

trend detection for each GDMs under the different scenarios.

The reliability of a GDM is defined as 100% minus the percent-

age of cases that erroneous growth-trends were detected. We

define the accuracy of a method as how well the strength of

the imposed trends is reflected in the detected trend, that is,

an imposed growth trend of 6% per decade translated to a

detected trend of 6% per decade. For this purpose, we calcu-

lated the (relative) slope of the detected trends by the different

GDMs and whether they coincided with the imposed trends.

Finally, we used the simulated data to assess the consistency

in trend detection between GDMs by analysing whether

GDMs detected trends similarly when applied on the same

random data sets (as also performed for Melia). To exclude

any effect of the random selection of trees on the sensitivity,

reliability, accuracy and consistency calculations, we repeated

these analysis ten times, using ten different ‘fixed’ random

data sets.

Implementation of growth-trend detection methods

Growth-trend detection methods were applied to both empiri-

cal and simulated tree-ring series. We applied CD using con-

servative curves (negative exponential curve, linear

regression, or horizontal line), fitted to the diameter incre-

ments of each measured and virtual tree-ring series, using the

DPLR package in R (Bunn, 2008). Residual ring-width series

were calculated by dividing measured ring widths by the fit-

ted function, and trends were calculated over average residu-

als per calendar year (i.e. the chronology). BAI conversion was

performed using standard formulas (cf. Phipps & Whiton,

1988; Silva et al., 2010; G�omez-Guerrero et al., 2013). BAI of all

individual series was then aligned to calendar year, and

trends were calculated over average BAI values per year. We

applied RCS following Esper et al. (2003), determining the

© 2014 John Wiley & Sons Ltd, Global Change Biology, 21, 2040–2054
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regional curve (i.e. the average age/size trend) for Melia by

aligning all individual growth rate series to cambial age. To

obtain a regional curve not driven by annual variations in

growth, we smoothened the curve using a 15-year spline func-

tion. Residuals were calculated by dividing the tree-ring series

by the regional curve, and trends calculated over average

residuals per calendar year. For SCI, we applied classes of

4 cm diameter, that is, every ring falling in a cumulative diam-

eter class of subsequently 4 cm (e.g. at 4 and 8 cm, etc.) was

marked as a central ring (Fig. 1). To obtain growth values not

driven by annual variations, growth rates per class were calcu-

lated as an average BAI of five rings: that of the central ring

plus the two previous and two subsequent rings. In the case of

missing rings (e.g. at the start or end of series), averages were

calculated for at least four rings.

For each GDM, growth data (i.e. in either BAI or residuals)

were related to calendar year to analyse long-term growth

trends. For the sensitivity and reliability analysis, we tested

for the presence of significant trends using Spearman’s rank

correlation coefficients (significance level P < 0.05; Fig. 1 see

‘Output’), as most data were not normally distributed. For the

accuracy and consistency calculations, we assessed the magni-

tude of the trend detected by fitting linear regression models

to each data set. We then determined how strongly the

imposed trends were reflected in the GDM results and

whether the detected slopes corresponded to the imposed

trends. For these analyses, we included all correlations,

including nonsignificant ones. The strength of the detected

trend was expressed in relative change per decade, that is,

expressed in percentages. To calculate relative slopes for SCI

and BAC, we divided each detected slope by the average

growth rate. For RCS and CD, we used slopes directly as these

already reflect relative growth trends. For the consistency

analysis, we used the RCS as a reference method and com-

puted the correlation between the slopes detected by the other

methods and the RCS (see Appendix S3).

In the SCI, trends were calculated for each size class con-

taining at least 10 individuals. For CD, BAC and RCS, we

excluded all calendar years with less than five individuals

prior to trend analysis. Furthermore, for CD, BAC and RCS,

we analysed correlations for all series (all trees), but also for

tree diameter at breast height (DBH) size classes separately: 0–
27 cm (understory trees), 27–54 cm (small canopy trees) and

>54 cm (large canopy trees). For ease of comparison, we calcu-

lated the sensitivity and reliability for the SCI as an average of

all the size classes. All statistical analyses were performed

using the R software for statistical computing, version 3.2.00

(R development core team 2013).

Results

The use of GDMs in literature

We found a total of 46 studies on 77 species in which

GDMs were used to detect growth trends. In total, 99

data sets of unique species 9 location 9 GDM combina-

tions were evaluated (Fig. 2 and Appendix S4). In a few

cases, two or more GDMs were used on the same data

set (e.g. Piovesan et al., 2008; Esper et al., 2010; Andreu-

Hayles et al., 2011). The studies were unevenly distrib-

uted over temperate, boreal and tropical regions, with

just four studies conducted in the tropics (13 data sets).

Conservative detrending was the most widely applied

GDM in all studies, with 20 studies on in total 46 data

sets. In 26 of these 46 data sets, positive long-term growth

trends were reported, whereas 15 data sets showed no

growth trends. SCI was the most applied method for

tropical species, with two studies on nine data sets.

Detecting long-term growth trends in Melia tree-ring
series

We analysed growth trends in the Melia tree-ring series

using the four GDMs to assess differences in their out-

put. Results for CD, BAC and RCS are presented for

four size categories: all trees, small (0–27 cm DBH),

medium (27–54 cm) and large trees (>54 cm). For SCI,

results are presented per 4-cm size class (Fig. 3) and we

include a clarification on how trends were computed in

SCI in a manner analogous to Fig. 1.

The trends detected for the Melia tree-ring series var-

ied between specific methods. Three GDMs detected

consistent negative growth trends over time: BAC, RCS
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Fig. 2 Results of a literature review of the most commonly used

growth-trend detection methods (GDM). A total of 46 studies

on 77 species are presented, comprising of 99 data sets of

unique species 9 location 9 GDM combinations. Bar colour

indicates whether positive trends (green), no trend (grey), or

negative trends (red) were detected. GDM abbreviations: con-

servative detrending (CD), basal area correction (BAC), regional

curve standardization (RCS) and size class isolation (SCI).
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and SCI. These trends were found for small and med-

ium-sized trees (BAC and RCS) and for 8–44 cm diame-

ter trees (SCI). RCS was the only method detecting

trends in the category of all trees. Trends detected by

BAC, RCS and SCI were highly significant (mostly

P < 0.001). The nonsignificant results for CD in all size

categories (P > 0.05) clearly contrasted with the highly

significant results obtained by the other GDMs.

In short, three of the four methods (BAC, RCS and

SCI) yielded evidence for declining growth rates over

time in small and medium-sized Melia trees.

Detecting imposed long-term growth trends on virtual
growth trajectories

We generated virtual growth trajectories mimicking the

growth of Melia, to assess the sensitivity, reliability,

accuracy and consistency of the four GDMs. The input

of the model consisted of factors for the age/size trend,

climate–growth relationship, growth autocorrelation (of

15 years) and stochastic variation. The modelled data

mimicked the growth of Melia very well: modelled

growth showed a similar age/size trend (and variation

around it; Fig. 4a) and similar year-to-year variation

(Fig. 4b) to the Melia data. This year-to-year variation

was induced by the input factor for climate–growth

relationship. We built a chronology for the modelled

data – on the same way as for Melia (see Appendix S1)

– that was highly similar to this input climate–growth

factor (R2 = 0.956, data not shown). Analysis a posteriori

on the no-trend scenario data set showed that the age/

size trend explained 18.8% of the variation in all growth

data while climate explained 8.4% of the variation

remaining after removal of the age/size trend (by

dividing individual series by the input formula for the

age/size trend). The remaining variation, not explained

(a)

(b)

Fig. 3 Results of the analyses of long-term growth trends on the tree-ring series of Melia azedarach. (a) Trends detected by each growth-

trend detection methods (GDM): conservative detrending (CD), basal area correction (BAC), regional curve standardization (RCS) and

size class isolation (SCI). Negative trends (red) and nonsignificant trends (grey) are presented for different diameter categories (in

Spearman’s rho, significance level P < 0.05). (b) Procedure and results of the SCI method: tree growth of all – small and large – individ-

ual trees is arranged to tree size (left panel) and average growth rates (of 5 years) are calculated within specific diameter classes, for

example Class 20 and Class 60 cm. For each diameter class, growth rates are then arranged to calendar year (right panel) and trends

computed over time, for example in the Class 20 cm, a negative trend was detected [red dot at 20 cm (in a)].

© 2014 John Wiley & Sons Ltd, Global Change Biology, 21, 2040–2054
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by the age/size trend or climate, can be attributed to

the factor for stochastic variation and to the autocorre-

lation in growth. Growth in the simulated growth

curves data was on average significantly autocorrelated

for up to 6 years (data not shown). The simulation of

positive and negative trends also clearly affected the

modelled growth data (and its average variation), as

shown in the mean basal area chronology for each

scenario (Fig. 4c).

Next, we assessed how well GDMs detected growth

trends imposed on the virtual growth trajectories.

Sensitivity (i.e. percentage of imposed growth trends

correctly detected) varied considerably among GDMs

(Fig. 5; Table 1). On the data sets with the strongest

imposed growth trends (i.e. 6% increase and decrease),

BAC, RCS and SCI often correctly detected the direction

of the imposed trends (Table 1). For these three GDMs,

sensitivity was higher with imposed strong negative

growth trends (93–100% of cases) than with positive

trends (30–99%) and this difference was most evident

in the SCI. CD had the lowest sensitivity, detecting

almost none of the strong imposed positive trends and

only 36% of the strong negative trends.

Sensitivity decreased for all GDMs when detecting

weak imposed growth trends of 2% increase or

decrease, compared to the strongest (6%) simulated

trends. For BAC and RCS, sensitivity was intermediate,

with trends correctly detected in 36–67% of the simula-

tions, whereas SCI had a lower sensitivity of 7–23%.

Again, CD had the lowest sensitivity, varying between

2% and 6%.

In the no-trend simulations, reliability was high for

CD, RCS and SCI – varying between 85% and 96% of

correctly detected ‘no trends’ – and was lower for BAC

(67%; Table 1). Erroneous trend detection also occurred

in the 2% increase and decrease scenarios (Fig. 5), but

overall, reliability was high in all simulations with

imposed growth trends (Table 1). For BAC, the lower

reliability in the no-trend scenarios, compared to the

other methods, was not reflected in the scenarios with

imposed trends: reliability was high, with >97% of

trends correctly detected.

The accuracy of trend detection (i.e. correctly

detecting the strength of the imposed trends) also var-

ied between GDMs. CD showed nearly no differences

in the strength of detected trends between increasing,
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decreasing and no-trend scenarios: detected slopes

varied between 0.0% and 1.0% growth-change per

decade (Fig. 6; Table S4 in Appendix S3). The other

GDMs appear to underestimate the detection of posi-

tive trends: in the scenarios with 2% growth

increases, growth trends were detected varying

between 0.4% and 1.1% per decade and in the 6%

increase scenarios between 1.7% and 3.5%. In the sce-

narios with growth decreases, on the other hand,

BAC and SCI overestimated the imposed trends, for

example in the 6% decrease scenario, growth

decreases of >11% were detected (Fig. 6; Table S4 in

Appendix S3). It is also clear that both BAC and SCI

show a higher spread of detected trends, that is,

wider distribution of detected slopes, compared to the

RCS (Fig. 6).

Consistency in detecting trends was high between

BAC and RCS: the detected trends showed high corre-

lations for all different scenarios (average R2 = 0.678;

Table S5 in Appendix S3). The slopes detected by SCI

correlated less strongly with the RCS (R2 = 0.192),

while for CD, the detected slopes did not correlate at all

(R2 = 0.022). For more detailed results on the consis-

tency, see Appendix S3.

In short, sensitivity varied between methods: detec-

tion of trends was good when 6% trends were imposed

but lower with the 2% trends. Reliability was high on

the simulations with imposed growth trends but erro-

neous trends were detected in the no-trend simulations,

with results varying between GDMs. Accuracy also

varied between GDMs: in CD nearly none of the

imposed trends were detected and the remaining meth-

ods tended to underestimate the imposed positive

trends, while overestimating the negative trends.

Finally, methods are rather consistent in detecting

trends when applied on the same data sets.

Discussion

Long-term growth trends for M. azedarach

Three of the four GDMs applied to detrend a single

tree-ring data set yielded similar results: long-term

decreases in growth for Melia trees in similar ranges of

tree size (Fig. 3). Application of CD did not yield trends

over time. The negative growth trends are consistent

with findings from Nock et al. (2011) who studied the

same tree species at the same site. They calculated

trends in BAI over different size classes, with a method

that combines BAC and SCI, using a mixed-effect

model.

Identifying the causal drivers of decreasing growth

rates is difficult (Clark & Clark, 2011) and multiple fac-

tors have been suggested: increased drought periods,

increasing temperatures and closing of the canopy after

disturbances (e.g. Nock et al., 2011; Middendorp et al.,

2013). In addition, biases due to sampling design

(Nehrbass-Ahles et al., 2014) or related to the nature of

tree-ring data (Brienen et al., 2012) could also lead to

the detection of (apparent) trends. For instance, the

‘juvenile selection effect’ (cf. Landis & Peart, 2005; Ro-

zendaal et al., 2010) could create negative growth

trends in a light-demanding species such as Melia,

where adult trees are probably the successful, fast-

growing individuals from the past. In addition to these

issues, we show here that the choice of growth-trend

detection method also influences the probability of

detecting trends.

Applying CD did not yield significant trends for

Melia in any of the size classes. This lack in trend detec-

tion is to be expected for CD (Briffa et al., 1992) as the

functions fitted to individual ring series may not differ-

entiate between age/size trends and trends induced by

Table 1 Sensitivity and reliability of four growth-trend detection methods (GDM) applied to a range of growth changes imposed

to simulated tree-ring series

GDM

Imposed growth trend (per decade)

Mean�6% �2% 0 2% 6%

CD Sensitivity 36.4 � 6.4 5.5 � 2.9 95.9 � 1.8 1.5 � 1.2 0.8 � 1.2 28.0

Reliability 98.6 � 1.1 98.7 � 1.2 95.9 � 1.8 97.9 � 1.1 99.4 � 0.7 98.1

BAC Sensitivity 100.0 � 0.0 66.9 � 4.6 66.7 � 4.3 56.5 � 3.6 98.9 � 1.0 77.8

Reliability 100.0 � 0.0 98.9 � 0.9 66.7 � 4.3 97.4 � 1.4 100.0 � 0.0 92.6

RCS Sensitivity 100.0 � 0.0 37.6 � 3.7 85.3 � 4.0 35.6 � 3.7 86.3 � 4.0 69.0

Reliability 100.0 � 0.0 99.2 � 1.0 85.3 � 4.0 99.7 � 0.5 100.0 � 0.0 96.8

SCI Sensitivity 93.2 � 0.6 23.4 � 1.8 93.9 � 0.5 7.1 � 0.9 30.5 � 1.3 49.6

Reliability 100.0 � 0.0 99.9 � 0.1 93.9 � 0.5 98.5 � 0.2 99.6 � 0.2 98.5

Sensitivity refers to the percentage of correct detection of the imposed growth trend. Reliability is 100% minus the percentage of

erroneous growth-trend detections. Values are presented as an average of 10 analyses � SDs. For SCI, the results are presented as

the average of all size classes and for the other methods, for the ‘all trees’ size category.

CD, conservative detrending; BAC, basal area correction; RCS, regional curve standardization; SCI, size class isolation.
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climatic influence (Cook et al., 1995). Furthermore, this

lack in trend detection may have been reinforced by the

relatively short length of our ring series (i.e. lifespan of

Melia ~100 years). On long series, function fit is mostly

determined by the age/size dependent growth trend in

the series, whereas on short series, function fit is

relatively more influenced by values at the end or

beginning of a series, hampering the detection of

trends. This pattern of lower trend detections on short

series also emerged from the literature review: trends

were detected by CD in 90% (19 of the 22) of studies

working with long series, that is, lifespans >130 years,

while in just 43% (9 of the 21) of studies with short

series (Appendix S4).
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The results on the Melia ring series indicate that

GDM choice influences the detection of long-term

trends. This influence was also suggested by Esper et al.

(2010) using multiple detrending methods on boreal

trees. These differences in trend detection between

methods suggest that results of studies using a single

method should be interpreted with care.

Sensitivity, reliability, accuracy and consistency of
growth-trend detection methods

If different GDMs yield similar results, this may be

reassuring, indicating that the detected trend is likely.

Yet, this does not imply that growth trends were cor-

rectly detected or that they were present in the tree-ring

series in the first place. We addressed these issues by

applying the four GDMs on simulated growth trajecto-

ries that had imposed growth trends. These growth-

trend scenarios, with either negative, no or positive

trends as input, demonstrated that GDMs vary in their

sensitivity (i.e. power to detect imposed trends), accu-

racy (i.e. how well the strength of trends are detected)

and reliability (i.e. 1- the probability of detecting erro-

neous trends). Sensitivity was reasonably high when

strong growth trends (of 6%) were imposed, but

decreased when imposed trends were weaker (2%;

Table 1). The accuracy of trend detection also differed

between GDMs, with a higher tendency to detect (or

overestimate) imposed negative trends than for positive

trends (Fig. 6). Similarly, the reliability of trend

detection was high in the scenarios with strong trends,

but was lower for the weak or no-trend scenarios

(Table 1). In the following section, we discuss specific

results for each of the GDMs.

Conservative detrending is assumed to sufficiently

remove the (negative) age/size trend in diameter

growth, while maintaining long-term trends. However,

several weaknesses of CD have already been noted

(Briffa & Melvin, 2011) and detrending series individu-

ally has been suggested to inevitably also remove long-

term trends in growth (Briffa et al., 1992; Cook et al.,

1995). Our results confirm these suggestions, as CD

showed the lowest sensitivity and accuracy of the four

methods (Table 1; Figs 5 and 6), implying that imposed

0.0

0.3

0.6

0.9

−15 −10 −5 0 5 10 15

D
en

si
ty

CD

0.0

0.2

0.4

0.6

−15 −10 −5 0 5 10 15
Trend detected (in % per decade)

D
en

si
ty

RCS

0.0

0.1

0.2

0.3

−15 −10 −5 0 5 10 15

BAC

0.00

0.05

0.10

0.15

0.20

−15 −10 −5 0 5 10 15
Trend detected (in % per decade)

SCI

6% Increase

Imposed Trend

6% Decrease

2% Decrease

No trend

2% Increase

Fig. 6 Comparison of slopes detected by the growth-trend detection methods (GDMs) for each of the imposed growth-trend scenarios

and runs. Coloured lines show the distribution of all slopes detected by the GDMs (as a Kernel density plots) and the vertical dotted

lines the corresponding imposed growth trends. GDM abbreviation: conservative detrending (CD), basal area correction (BAC), regio-

nal curve standardization (RCS) and size class isolation (SCI).

© 2014 John Wiley & Sons Ltd, Global Change Biology, 21, 2040–2054

DETECTING GROWTH TRENDS USING TREE RINGS 2049



growth trends were completely removed from most

simulated growth trajectories (Table 1). Additionally,

CD was the least consistent method in detecting trends,

that is, slopes detected by CD showed nearly no

correlation with slopes detected by the RCS (Appendix

S3). Although these weaknesses have been noted, CD is

still widely applied (e.g. Wang et al., 2006; see Appen-

dix S4; Villalba et al., 2012). This low sensitivity is also

reflected by the relatively high proportion of studies

detecting no growth trends when applying CD (15 of

the 43 reviewed data sets; Appendix S4), which is con-

siderably higher than for other GDMs (Fig. 2). Similar

to the Melia data, the complete removal of trends from

the modelled data may have been reinforced by the rel-

ative short length of the simulated growth trajectories.

Furthermore, the negative (exponential/linear) curves

fitted in CD may also not be suitable for describing the

initial growing phases of trees, when young growth

years or young individuals are included. CD may thus

be better suited for detecting trends on long-lived

species.

Basal area correction showed high sensitivity and

good accuracy in detecting growth trends (Table 1;

Figs 5 and 6), and trends detected using BAC were con-

sistent with those detected with RCS (Appendix S3).

However, the reliability of BAC was the lowest of all

methods, especially in the no-trend simulations

(Tables 1 and 2). The frequent detection of erroneous

trends by only expressing growth in basal area is worri-

some, as BAC is still applied this way (e.g. Mart�ınez-

Vilalta et al., 2008; Silva et al., 2010) and this unreliabil-

ity may lead to incorrect conclusions about growth

trends. Our results suggest that BAC may not effec-

tively disentangle age/size from long-term growth

trends. Indeed, growth of Melia (and the simulations

derived from Melia data) still shows a clear age trend in

BAI (Fig. 4a). If the age/size trend is not correctly

accounted for, trends may be induced by, for instance,

changes in the relative abundances of small (slow

growing) and large (fast growing) trees over time.

Simply expressing growth as basal area has the

advantage of avoiding curve fitting procedures (as per-

formed in CD and RCS; Table 2) and also because BAI

is a meaningful expression of tree functioning, for

example conducting xylem surface (e.g. Mendivelso

et al., 2013; Sterck et al., 2014). However, this conver-

sion may thus not suffice to remove the age/size trends

and additional steps are necessary to account for the

remaining age/size trend when using BAC. These steps

may include: analysing trends inside specific size clas-

ses (e.g. only for mature trees; cf. Jump et al., 2006);

detrending the BAI series by an estimated BAI growth

trend (the C-Method, cf. Biondi & Qeadan, 2008); or

incorporating tree size explicitly (e.g. in mixed-effect

models) when analysing trends (e.g. Mart�ınez-Vilalta

et al., 2008; Nock et al., 2011). Analysing trends inside

specific size classes may indeed provide additional

information, as illustrated in the trend analysis for

Melia. When analysing trends in specific size classes,

trends were detected for the small and medium size

categories but not for all trees (Fig. 3). Note that with

small size classes, BAC effectively becomes analogous

to SCI. We also applied the C-method (cf. Biondi &

Qeadan, 2008) to the simulated data. Surprisingly, this

Table 2 Strengths and limitations of four different growth-trend detection methods (GDM)

CD BAC RCS SCI

Strength

High sensitivity (Table 1) ✗ U U ✗

High reliability (Table 1) ✗ ✗ U U

Can be applied on untransformed growth data (Fig. 1) ✗ U ✗ U

Can be combined with climate–growth analysis (Fig. 1) U U U ✗

Limitation

Time span ring series should extend span of the trend assessed* U ? U ?

Low detection power for larger diameter classes† ✗ ✗ ✗ U

Affected by sampling biases‡ U U U U

Symbols indicate whether strength or limitation is applicable: check mark = applicable; crosses = not applicable; and question

marks = still unclear/not assessed. Criteria are either assessed in this study or derived from literature (as indicated). Sensitivity

refers to the percentage of correct detection of imposed growth trend and reliability = 100% minus the percentage of erroneous

growth-trend detections.

GDMs assessed: CD, conservative detrending; BAC, basal area correction; RCS, regional curve standardization; SCI, size class isola-

tion.

*To avoid the trend-in-signal bias (cf. Briffa & Melvin, 2011).

†Sample size decreases with increasing diameter (e.g. for Melia, n = 17 at 63 cm diameter).

‡Slow-grower survivorship bias and big-tree selection bias (cf. Brienen et al., 2012).
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method detected solely negative trends, irrespective of

the imposed trends (see for more details Appendix S5).

We believe that C-method might not be suitable for

short series, that is, the small trees in our data set, as it

cannot account well for the ontogenetic growth trends

in these small/juvenile trees (Biondi & Qeadan, 2008).

We have not analysed trends using mixed-effect mod-

els, as this was beyond our scope of comparing existing

and widely used methods. However, we believe that

mixed-effect models, including generalized additive

mixed models (GAMM), have great potential to disen-

tangle age/size trends from long-term growth trends,

as these models can simultaneously account for linear

(i.e. growth trends) and nonlinear (i.e. age/size) trends

in a data set (Wood, 2006; Polansky & Robbins, 2013).

Such approaches are, however, rare in tree-ring studies

(e.g. Mart�ınez-Vilalta et al., 2008; Nock et al., 2011) and

should receive more attention. Additionally, the detec-

tion of trends using BAC may be hampered as growth

(in basal area) may continually increase over a tree’s life

(Stephenson et al., 2014). If a species shows a continu-

ally increasing trend in basal area growth over its life,

BAC is hampered in disentangling age/size from long-

term growth trends. However, such increasing growth

trend poses less of a problem for the other methods, as

the age trend (or size trend) will be accounted for by

the fitted conservative curves, incorporated in the

regional curve or, for the SCI, trees will be selected

from within a particular size class (with its correspond-

ing ‘average’ growth rate).

Overall, RCS showed high sensitivity, accuracy and

reliability (Table 2). However, sensitivity was below

50% in the scenarios with weak growth trends (2%;

Table 1) and RCS underestimated the strength of

imposed positive trends (Fig. 6). Weak (positive)

growth trends over time are thus not easily detected

using this method. Applying RCS requires large sample

sizes (Briffa et al., 1992; Esper et al., 2002) and ideally

species showing a ‘strong’ age–size relationship, to

enable the calculation of a representative and ‘strong’

regional curve. Our light-demanding study species –
and the simulated series – showed such strong age/size

relationship. RCS may be less suitable for shade-toler-

ant species, as these species often exhibit rather weak

age–size relationships (due to periods of slow or

suppressed growth). Also, the period covered by the

tree-ring series in RCS should ideally be longer than

the period over which trends in environmental signals

are assessed (Table 2; e.g. Esper et al., 2002), to avoid

that externally driven growth trends are incorporated

into the regional curve (the ‘trend in signal bias’; cf.

Briffa & Melvin, 2011). In boreal and temperate regions,

fossil and subfossil wood are often incorporated to

extend the time span of long-term growth reconstruc-

tions (e.g. Esper et al., 2012). In regions lacking fossil

wood (e.g. in the tropics, due to the high decomposition

rates), it is necessary to work with long-lived species

when using RCS when analysing climate change effects

on tree growth. For tropical studies, the combined

requirements of long lifespans and strong age/size rela-

tionships imply the RCS may be better suited for long-

lived pioneer species. Finally, RCS requires accurate

estimations of tree ages (cambial age) to calculate the

regional curve (unless the regional curve is based on

diameter instead of age; cf. Bontemps & Esper, 2011).

Care should thus be taken when estimating ages from

increment cores that do not include the pith.

The SCI method was not very sensitive but showed

high reliability (i.e. detecting few trends erroneously;

Table 1 and Fig. 5), detected the imposed trends rather

accurately (Fig. 6) and was consistent with the RCS

(Appendix S3). Splitting the data into diameter classes

reduces sample size, as trends are calculated on aver-

age growth values per tree and not on individual ring

measurements. Sample size may be particularly low in

smaller diameter classes, due to missing piths when

coring, and in large diameter classes if only a small por-

tion of trees are large. The low sensitivity of SCI may be

explained by these reduced sample sizes and working

with SCI thus requires sampling relatively large num-

bers of trees (Table 2). Furthermore, SCI requires

including both large and small trees, which is not

always possible as many (tropical) species show peri-

odic absence of recruitment (e.g. Vlam et al., 2014a).

Another limitation of SCI is that determining size clas-

ses is a subjective process that may lead to analyses of

trends over a variety of classes for different species (e.g.

Rozendaal et al., 2010), making comparisons between

these analyses more difficult. Additionally, the output

of SCI is less suitable for establishing climate–growth

relationships (Table 2), which hampers assessing which

environmental factors may explain growth trends.

Despite its limitations, SCI showed low detection of

erroneous trends, that is, SCI is a reliable method. We

argue that the reliability of a method is important, as a

conservative method is preferred over an unreliable

method. Finally, another advantage of SCI is that it

directly evaluates growth trends on raw measurements

and therefore is not influenced by (subjective) decisions

on curve fitting that are necessary for CD and RCS

(Table 2).

Overall, the four tested GDMs differed in their sensi-

tivity, reliability, accuracy and consistency. These

results show that detection of long-term trends (span-

ning several decades to centuries) is affected by method

choice and suggest that the age/size trend may not be

completely removed in some methods. GDM sensitivity

and accuracy varied, with CD not detecting trends
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while the other methods underestimate positive trends

while overestimating negative trends. This stronger

detection of negative trends can in part be explained by

the fact that growth cannot be negative in our modelled

data or in real tree-ring data. Growth reductions over

time force growth data nearer to zero, reducing varia-

tion in growth data over time. The contrary is true for

the growth increase scenarios (see Fig. 4c), in which

growth variation increases. We believe that the lower

variation in growth in the decrease scenarios implies

trends are more easily detected, thus leading to the

higher sensitivity and accuracy.

In our modelling approach, we attempted to assess

how the variation present in tree growth affects the

detection of trends (i.e. an improved power test) and

determined each factor in the model using simple cor-

relations. This approach only accounts for the stochastic

variation in growth and is of course a simplification of

all physiological and mechanistic factors affecting tree

growth. A modelling approach based on mechanistic or

physiological processes could greatly enhance the

understanding of the effects climate change on tree

growth and how to detect them. Furthermore, our find-

ing should be interpreted with some care, as the growth

characteristics of one tropical species do not necessarily

apply to other species or other regions. Similar analyses

should thus be performed on more species, including

widespread and well-studied species such as Scotch

Pine (Pinus sylvestris) or Douglas Fir (Pseudotsuga menzi-

esii), for which long chronologies are available. Despite

the limitations of our approach, we believe that it suf-

fices when assessing the detection power of the differ-

ent GDMs and that it forms an important first step in

disentangling the effects of method choice on the detec-

tion of long-term growth trends.

Recommendations for growth-trend detection

Tree-ring analysis has been widely applied to detect

growth trends in boreal and temperate tree species, and

there is growing interest in using tree rings for the same

purpose for tropical tree species (Bowman et al., 2013).

In this study, we focused on the four detrending meth-

ods most widely used in tree-ring research to disentan-

gle age/size trends from long-term growth trends.

Below, we provide recommendations for tree-ring stud-

ies analysing trends in growth.

Our results suggest that, to detect long-term growth

trends, CD is not very suitable, that BAC is not always

reliable and that the RCS and SCI show good potential.

Using CD, no trends were detected in the Melia tree-

ring data and in nearly all simulated growth data. We

recommend not using CD to evaluate trends, especially

when working with short-lived species, and CD may be

better suited when analysing climate–growth relation-

ships. BAC showed high sensitivity and accuracy, but

showed the lowest reliability (i.e. it also detected trends

erroneously). This low reliability is problematic, as

determining when a trend is correctly or erroneously

detected in measured ring data is difficult. Great care

should thus be taken if only expressing growth in basal

area. Several additional steps can be taken to improve

analysis with BAC, as discussed above. The high sensi-

tivity of BAC merits assessing which of these steps

effectively increase BAC’s reliability.

For future tree-ring studies analysing growth trends,

we recommend the use of several GDMs. We believe

that combining the sensitive RCS with the reliable but

somewhat conservative SCI would yield robust results.

RCS showed high sensitivity and reliability and the

SCI, despite its low sensitivity, was the most reliable

method (i.e. the lowest erroneous detection of trends).

These two methods are complementary in three aspects.

First, SCI is independent of the age/size trend, whereas

RCS depends on a ‘strong’ ontogenetic signal and may

be less reliable when this signal is lacking. Second, the

sensitivity of SCI depends of large sample sizes, as indi-

viduals (and not growth measurements) are the units of

analysis. On the other hand, sensitivity of RCS is gener-

ally high as the individual ring measurements are the

units of analysis. Thus, RCS is more suitable to detect

weak growth trends and more suitable when sample

sizes are relatively small. Third, the higher reliability is

an important asset of SCI and – combined with its

somewhat lower sensitivity – it makes SCI a high-qual-

ity, conservative method that can be used to verify the

robustness of trends detected using RCS.

Detecting trends in tree growth is challenging,

whether one deals with growth data derived from per-

manent plot studies or from tree-ring analysis (Bow-

man et al., 2013). For tree-ring data, both from

temperate, boreal and tropical regions, specific limita-

tions exist that need to be taken into account. First,

many tree species show persistent temporal growth dif-

ferences, that is, fast-growing individuals stay fast

growers in time (e.g. Brienen et al., 2006). We believe

that especially the RCS is sensitive to these growth dif-

ferences. These differences lead to strong variation in

diameter–age relationships that disproportionally affect

the regional curve and therefore influence trend detec-

tion. Similarly, shade-tolerant species and species

showing periods of growth suppression (e.g. slow

growth due to overshadowing) may show periods of

low or high growth over multiple years. To minimize

the effect of these persistent growth differences on the

regional curve, we recommend calculating RCS using

small cumulative diameter classes (e.g. 1 cm) instead of

age (cf. Bontemps & Esper, 2011).
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Second, biases due to sampling strategies can poten-

tially induce growth trends over time (Brienen et al.,

2012; Nehrbass-Ahles et al., 2014). For instance, growth

increases may be detected if slow-growing individuals

within a population live longer, that is, the ‘slow-

grower survivorship’ bias (cf. Brienen et al., 2012;

Table 2), but see Ireland et al. (2014). These slow-grow-

ing individuals will then be overrepresented in the

more ancient portion of the data set, leading to appar-

ent growth increases over time. Irrespective of the

GDM used, tree-ring series should be collected accord-

ing to the population structure to avoid such sampling

biases as much as possible (e.g. Vlam et al., 2014a).

Additionally, accurate estimation of tree ages is crucial

and may require working with cross-sectional discs

instead of increment cores. Furthermore, we stress the

importance of sampling near permanent sample plots

and weather stations with long-term, high-quality data

(cf. Wang et al., 2006; Clark & Clark, 2011), to provide

critical contextual information on the sample site and

conditions (Bowman et al., 2013).

Finally, detecting trends using tree-ring analysis

requires working with large sample sizes (~100 trees or

more per species). Large samples are needed to

increase trend detection power and to obtain ‘represen-

tative’ subsets of the population (e.g. for a ‘representa-

tive’ regional curve in RCS). Also, to avoid local or

regional effects on trends, sampling should preferably

occur over large geographical scales (e.g. Esper et al.,

2012; Villalba et al., 2012). In the tropics, however,

acquiring and measuring large number of trees is chal-

lenging, due to low species abundance of individuals

and the difficulties of working with tropical tree rings

(Groenendijk et al., 2014). Collecting multiple species

and simultaneously analysing their growth trends (e.g.

with mixed effects models) can be applied to increase

the statistical power of the analysis (e.g. Kint et al.,

2012; Lara et al., 2013). Such combined analyses are par-

ticularly powerful if sampling follows a standardized

strategy (cf. Nehrbass-Ahles et al., 2014). A standard-

ized sampling and analysis protocol would allow for a

meta-analysis of tree-ring studies worldwide, which is

critical to assess the effects of global environmental

changes on tree growth and forest dynamics.

To accurately identify long-term growth trends using

tree-ring analysis, the best approach is probably to

apply several detrending methods simultaneously. This

approach would be especially strong if combined with

simulated tree-ring series that take sample sizes into

account and that mimic the variance in tree growth.

Such integrative approaches are essential to determine

whether detected growth trends really occured and

should be extended to include more species, from

boreal, temperate and tropical regions.
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