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Abstract Miconia is one of the largest exclusively Neo-

tropical genera, inserted in the tribe Miconieae. Although

the monophyly of the tribe has recently been recognized,

the delimitation of its genera is considered quite arbitrarily

defined, mainly due to the great diversity combined with

little morphological and genetic characterization of its

members. Recent findings have associated this diversity

with polyploidy, apomixis and hybridization, mechanisms

commonly found in the group. The conventional delimi-

tation of sections in Miconia, which has been largely based

on stamen morphology, has proved to be undoubtedly

artificial; nevertheless, the potential taxonomic significance

of anther wall and pollen ontogenetic characters within the

genera Miconia has been little explored. Hence, this study

intended to fill that gap in our knowledge, by investigating

the anther wall and pollen development in six closely

related species of Miconia: M. albicans, M. fallax, M.

latecrenata, M. paucidens, M. pepericarpa and M. steno-

stachya. Routine techniques for both light and electronic

microscopy were used to examine anthers and pollen grains

in several developmental stages. The species studied here

share several character states, such as the remarkable

monocotyledonous anther wall development, the persistent

endothecium in the mature anthers with no cell wall

thickenings, the bilocular dehiscent anther and the psilate

pollen exine. This study also reports for the first time

bisporangiate anthers, crystals and proteinoplasts in tapetal

cells for Melastomataceae, and ultrastructural features of

anther and pollen wall for Miconia.

Keywords Anther � Pollen � Ontogeny � Miconia �
Miconieae � Taxonomy

Introduction

Miconia Ruiz & Pav. belongs to Melastomataceae Juss.,

order Myrtales, and is one of the largest exclusively Neo-

tropical genera, with about 1,057 species (Goldenberg et al.

2013). Its members are ecologically important since their

fleshy fruits are used as a food resource for local fauna

(Magnusson and Sanaiotti 1987; Levey 1990; Stiles and

Rosselli 1993; Figueiredo and Longatti 1997; Allenspach

and Dias 2012) and some species can be used in natural or

human-induced forest regeneration (Ellison et al. 1993;

Baider et al. 2001). Miconia species are also useful as

medicinal plants due to antibacterial agent of their sec-

ondary metabolites (Alves et al. 2000; Joffry et al. 2012;

Pereira et al. 2013) and particularly interesting due to the

occurrence of apomixis, a reproductive phenomenon that

occurs in several of its members (Goldenberg and Shepherd
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1998; Goldenberg and Varassin 2001) and has important

ecological and evolutionary implications.

Recent revisions have recognized the tribe Miconieae as

monophyletic but not the majority of its large genera

(Penneys and Judd 2005), since Miconia, Clidemia, Lean-

dra and Ossaea are paraphyletic or polyphyletic (Michel-

angeli et al. 2004; Goldenberg et al. 2008; Martin et al.

2008). The dilemma in the circumscription of the genera

within Miconieae may be a consequence of apomixis,

hybridization and polyploidization, mechanisms frequently

found in this group (Goldenberg and Shepherd 1998),

making the interpretation of morphological data a very

complex task. The poor morphological characterization of

Miconieae (Goldenberg et al. 2008) considering the large

number of species does not yet allow the use of morpho-

logical characters to access evolutionary relations among

its species.

Features from anther wall and pollen development have

been used for systematic purposes in angiosperms (Ma-

heshwari 1950; Davis 1966), including Myrtales (Tobe and

Raven 1983). Endothecium without fibrous cell wall

thickenings and uninucleated tapetal cells, for example, are

consistent embryological markers for Melastomataceae

members (Tobe and Raven 1983; Schmid 1984; Medeiros

and Morretes 1996; Goldenberg et al. 2003; Melhem et al.

2003), but in general, the embryological characters are still

little explored in Miconieae (see Subramanyam 1942; Patel

et al. 1984; Tobe and Raven 1984; Medeiros and Morretes

1996; Caetano et al. 2013a). Also, some developmental

pollen characters have recently been employed to distin-

guish Miconia species with different modes of reproduction

(Cortez et al. 2012; Caetano et al. 2013b).

The majority of reproductive characters (e.g., embryol-

ogy) seems to be more conserved than the vegetative ones

(Tobe 1989) and their association with molecular data

would provide greater reliability in reconstructing the

evolutionary history of a taxa. Hence, this research inten-

ded to study some aspects of anther wall and pollen

development in six closely related species of Miconia (see

Goldenberg et al. 2008): M. albicans (Sw.) Triana, M.

fallax DC., M. latecrenata (DC.) Naudin, M. paucidens

DC., M. pepericarpa DC. and M. stenostachya DC., and

check for embryological patterns in the group.

Materials and methods

At least five individuals from each of six species of Mi-

conia growing in natural populations in São Paulo state,

southeast Brazil, were included in this study, conducted

between 2007 and 2012. Samples from all collected species

were identified and deposited in the Herbarium UEC

(Table 1).

Anthers in several stages of development were removed

from young buds and flowers and immediately fixed for

24 h in a solution with 80 mL L-1 glutaraldehyde,

250 mL L-1 paraformaldehyde (16.0 %) and 500 mL L-1

phosphate buffer (0.1 M, pH 6.8) (modified from Kar-

novsky 1965) and then transferred to a phosphate buffer

(0.1 M, pH 6.8) solution. These initial procedures were

followed by one of the techniques detailed below.

The anatomical analyses were carried out on anthers of

all the six species after their dehydration using ethanol

series. The anthers were embedded in glycol methacrylate

(Historesin Leica) according to the manufacturer’s speci-

fication. Cross and longitudinal sections, both between 1.0

and 3.0 lm thick were made on a RM2245 Leica rotary

microtome using a tungsten knife. The sections were sub-

mitted to the following staining solutions: 12 g L-1

acetocarmine solution for better cytoplasm visualization,

40,6-diamidino-2-phenylindole (DAPI) in phosphate buf-

fered saline (PBS) for better nuclear visualization, 0.05 %

Table 1 Information of Miconia species examined and their collection sites

Species Reproductive system Collection sites Geographical coordinates Vouchers

M. albicans Apomictic Itirapina, SP, Brazil 2281501000S

4784902200W

P.A. Cortez et al. s/n (UEC 162376)

M. fallax Apomictic Itirapina, SP, Brazil 2281501000S

4784902200W

P.A. Cortez et al. s/n (UEC 162378)

M. latecrenata Apomictic Jundiaı́, SP, Brazil 238120/238210S

468300/478050W

R. Goldenberg s/n

(UEC 84180)

M. paucidens Sexual Itirapina, SP, Brazil 2281501000S

4784902200W

P.A. Cortez et al. s/n (UEC 162385)

M. pepericarpa Sexual Itirapina, SP, Brazil 2281501000S

4784902200W

P.A. Cortez et al. s/n (UEC 162384)

M. stenostachya Apomictic Itirapina, SP, Brazil 2281501000S

4784902200W

P.A. Cortez et al. s/n (UEC 162382)
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toluidine blue (CI 52040) in citrate buffer (pH 4.0) for

phenolic compounds, Lugol solution for starch grains,

xylidine Ponceau (pH 2.5) (C.I. 16150) for total proteins,

Sudan black B (C.I. 26150) for lipids, periodic acid Schiff

reaction (pararosanilin C.I. 42500) for structural carbohy-

drates, Ruthenium red solution for pectin, and aniline blue

(pH 8.0) (C.I. 42755) using a fluorescence microscope

equipped with an ultraviolet (UV) excitation filter for

detection of callose wall deposition. Light polarization

techniques were used to better observe crystals. Digital

images were obtained under a BX 51 Olympus light

microscope.

The surfaces of M. albicans, M. fallax, M. latecrenata,

M. paucidens and M stenostachya anthers and pollen grains

were analyzed after being dehydrated using an ethanol

series, critical-point dried using liquid CO2 on a Balzers

CPD030 apparatus and mounted on metallic stubs using

double-sided carbon adhesive tape. Some anthers were

carefully opened to expose the pollen grains, and then the

material was gold coated on a Balzers SCD050 sputter

coater. The observations and illustrations were made under

a JEOL JSM-5200 scanning electron microscope.

The ultrastructural characteristics of anther wall and

pollen grains were obtained for M. albicans, M. pauci-

dens and M. stenostachya. The anthers were transferred

from the phosphate buffer (0.1 M, pH 6.8) solution to a

post-fixation solution (1.0 % osmium tetroxide in phos-

phate buffer) and, after dehydration through a series of

graded acetone, the anthers were submitted to the infil-

tration and embedding procedures using Araldite 502

Polysciences resin, and the blocks obtained were sec-

tioned using a diamond knife at 50 nm in a Reichert

UltraCut S Leica. The sections were placed on nickel

mesh grids, contrasted using both uranyl acetate (Watson

1958) and lead citrate (Reynolds 1963) for 15 min. The

observations and illustrations were taken under an EM

208 Philips transmission electron microscope.

Fresh pollen grains were collected from opening

anthers and submitted to the water content and germina-

tion tests. In the water content test, pollen grains were

deposited on two groups of glass slides: in the first group,

the pollen grains were immediately covered with a drop of

water; in the second group, the pollen grains were

immediately covered with a drop of immersion oil

(modified from Dafni et al. 2005). After a few minutes,

both slide groups were observed under a BX 51 Olympus

light microscope and compared in relation to pollen grain

size and shape. In the germination test, pollen grains were

deposited in a nutritive medium containing 2.0 % color-

less gelatin, 20.0 % sucrose, 0.01 % boric acid and

0.05 % calcium nitrate (modified from Santos and Mari-

ath 1997). After an incubation period of 3 h at 25 �C in

dark chamber, the pollen grains were observed under a

BX 51 Olympus light microscope for pollen tube mor-

phology. The pollen grains that successfully germinated

were also submitted to the anatomical analysis detailed

above.

Pollen grain terminology followed Hesse et al. (2009).

Results

Initial anther wall development and microsporogenesis

Five of the six species studied here present anthers with

four microsporangia (Fig. 1a–e); only Miconia latecrenata

have anthers composed by two microsporangia, one in each

theca (Fig. 1f).

The early sporogenous tissue is massive and located in the

central portion of the microsporangium; its cells are polyg-

onal in shape, with electron-dense cytoplasm composed of

mitochondria, dictyosomes, smooth endoplasmic reticulum

and small vacuoles; some plasmodesmata can be seen con-

necting adjacent sporogenous cells (Fig. 2a, b). This spo-

rogenous tissue is surrounded on its outer side by the

epidermis (outer) and by the primary parietal layer (inner),

both one-layer thick; the cells of the primary parietal layer

divide periclinally to form the outer and the inner secondary

parietal layers (Fig. 2c). The outer secondary parietal layer

develops into the endothecium while the inner secondary

parietal cells divide periclinally to form the outer middle

layer and the inner tapetum layer (Fig. 2d–f).

Just before the beginning of meiosis, microspore mother

cells develop from the sporogenous cells and a gradual

deposition of a thick wall composed of callose occurs

around each microspore mother cell in all the six species

(Fig. 3a–c). The meiotic process occurs with strong irreg-

ularities in most of the anthers of M. fallax, M. latecrenata

and M. stenostachya (Fig. 3d, e), and it was not observed in

M. albicans anthers. Successful meiosis only occurs in M.

pepericarpa and M. paucidens microspore mother cells,

and in some anthers of M. fallax and M. stenostachya,

resulting in four-nucleate syncytium (Fig. 3f); in this spe-

cies, meiosis is followed by simultaneous cytokinesis,

which gives rise to tetrahedral microspore tetrads (Fig. 3g,

h), with each microspore still surrounded by the callose

wall when the primexine deposition starts (Fig. 3h, i).

From the pre-meiotic stage to cytokinesis, the anther wall

in all the six species is composed of four or five layers: the

epidermis (the outermost layer), endothecium, middle

layers (one or two layers thick) and tapetum (the innermost

layer); the middle layer may appear crushed due to the

enlargement of the tapetal cells, which are secretory and

uninucleate (Fig. 3a, c).

At the post-meiotic stage, all microspores—including

those abnormally formed in the M. fallax, M. latecrenata,
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and M. stenostachya anthers—become free due to the

callose wall dissolution, and a stratified wall is gradually

formed along with the aperture delimitation around each

microspore (Fig. 4a). At this stage, all Miconia species

display the anther epidermal cells with thickened outer

periclinal wall covered by a striate cuticle, except for the

dehiscent pore, where the cuticle is absent (Fig. 4e, f); the

endothecium cells enlarge and the tapetal cells start a

gradual degradation (Fig. 4a–d, h); several Ubisch bodies

are especially abundant in the locule-facing tapetal cells,

close to the inner periclinal cell walls, forming the tapetal

and peritapetal membranes (Fig. 4c, h). In M. paucidens

anthers, proteinoplasts and druse crystals were observed in

the tapetal cell cytoplasm (Fig. 4g, h).

Final anther wall development and microgametogenesis

The final stage of the free microspore is marked by the for-

mation of a large cytoplasmic vacuole, which coincides with

the parietal positioning of the nucleus (Fig. 5a, b) and with

the asymmetrical first mitosis (Fig. 5c). The asymmetrical

cell division gives rise to bicellular pollen grains containing

two unequal cells: a larger vegetative cell and a smaller,

lenticular parietal generative cell (Fig. 5d, e). In some

Fig. 1 Transversal section of Miconia anthers. a–e Tetrasporangiate

anthers. f Bisporangiate anther. Symbols: filled star microsporangium,

co connective, se septum, vb vascular bundle. a M. albicans, b M.

fallax, c M. paucidens, d M. pepericarpa, e M. stenostachya, f M.

latecrenata. a–f Light Microscopy

P. A. Cortez et al.
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microspores of M. fallax and M. stenostachya, this first

mitosis also occurs but in an irregular way, leading to the

formation of two similar-sized cells; in M. albicans, all the

steps of gametogenesis were absent. In M. paucidens and in

M. fallax and M. stenostachya with asymmetrical first divi-

sion, the vegetative cell has electron-dense cytoplasm con-

taining mitochondria, endoplasmic reticulum, dictyosomes

and vesicles, in addition to the spherical and prominent

nucleus, and generative cell has a few portions of cytoplasm

containing mitochondria and a large spherical nuclei

(Fig. 5e). The generative cell changes in shape from lentic-

ular to spherical, and gradually detaches from the pollen wall

and moves toward the center of the pollen grain, remaining

totally inside the vegetative cell cytoplasm (Fig. 6a–d). The

Fig. 2 Transversal sections of Miconia anthers in pre-meiotic stage.

a, b Sporogenous cells. c Periclinal division in primary parietal layer

(ppl). d–f Periclinal division in cells of the inner secondary parietal

layer (ispl). Note that the cells of the outer secondary parietal layer

(ospl) do not divide. Symbols: open right triangle plasmodesmata,

filled right triangle mitotic division, asterisk sister cells, di dictyo-

some, ep epidermis, er endoplasmic reticulum, mt mitochondria, nu

nucleus, sc sporogenous cell, se septum, va vacuole, a M. fallax. b M.

paucidens. c M. pepericarpa. d M. fallax. e, f M. albicans. a, c–

e Light microscopy, b, f transmission electron microscopy
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generative cell progressively changes in shape from spherical

to elongated (Fig. 6e), which occurs late and less frequently

in M. fallax and M. stenostachya.

In all species except M. albicans, the mature pollen

grains are shed in monads, which are small (c.a.

10 lm), prolate, heteroaperturate, with three colpori

alternating with three pseudocolpi (Fig. 6f–h); the

exine surface is perforate in M. latecrenata (Fig. 6i),

granulate–verrucate in M. paucidens (Fig. 6j) and psi-

late in M. stenostachya (Fig. 6k). In M. fallax, the

exine pattern is masked by the great amount of locular

substances, possibly Ubisch bodies (Fig. 6l). M. albi-

cans did not present well-formed pollen grain and for

this, its exine surface was not analyzed. The released

pollen grains of all species except M. albicans are

bicellular and orthodox, differing in form and size

between its dry and hydrated condition (Fig. 6m, n). In

M. paucidens and M. stenostachya, the exine has an

ektexine (outer) and an endexine (inner); the ektexine

is composed by the discontinuous tectum, the

Fig. 3 Transversal sections of Miconia anthers during microsporo-

genesis. a Microspore mother cells (mmc) before callose wall

deposition. b, c Isolated microspore mother cells after callose wall

deposition. d, e Irregular meiotic figures. Arrows indicate precocious

chromosome ascension in (d) and lagging chromosome in (e).

f Tetranucleate syncytium surrounded by the callose wall. g Tetrahe-

dral microspore tetrads originated by simultaneous cytokinesis. h,

i Primexine deposition around microspores. Symbols: filled star

callose wall, open right triangle primexine, en endothecium, ep

epidermis, mi microspore, ml middle layer, mt mitochondria, nu

nucleus, ta tapetum, a M. albicans, b M. stenostachya, c M.

latecrenata, d M. fallax e M. stenostachya, f M. pepericarpa, g M.

paucidens, h, i M. stenostachya. a–h Light microscopy, i transmission

electron microscopy

P. A. Cortez et al.

123



columellate infratectum and the continuous foot layer;

the endexine is compact and continuous; the lumen

delimited by the columella is large, filled with pol-

lenkitt, the appearance of which is electron dense; the

intine is thin except in the colpore region, where it is

very thick (Fig. 7a, b). At this stage, all Miconia

species display epidermis and non-fibrous endothecium

as parietal layers (Fig. 7c–f), and the tapetal membrane

(Fig. 7g); all species display degeneration of the sep-

tum that divides the two pollen sacs of each theca,

Fig. 4 Transversal sections of Miconia anthers during free micro-

spore stage. a–d Free microspores and the beginning of tapetal cell

degradation. Note the aggregated Ubisch bodies (black arrow) in

(c) and tapetal cells with one nucleus (white arrow) in (d). e, f Anther

epidermis in detail showing cuticle ornamentation. g, h Tapetal cells

with proteinoplasts (pp) and crystals (‘‘inset’’) inside the cytoplasm.

Note the tapetal membrane (black arrow) in (h). Symbols: cu cuticle,

cw cell wall, dr dehiscence region, en endothecium, ep epidermis, er

endoplasmic reticulum, mi microspore, ml middle layer, nu nucleus,

pp proteinoplast, se septum, ta tapetum. a, c, g, h M. paucidens, b,

e M. latecrenata, d M. stenostachya, f M. albicans. a–d, g Light

microscopy, e scanning electron microscopy, f, h transmission

electron microscopy
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except M. latecrenata, because its mature anther

becomes bilocular (Fig. 7c, d).

In M. paucidens and M. pepericarpa, the second mitotic

division that gives rise to the two sperm cells occurs inside

the pollen tube, which emerges from one of the three

colpori (Fig. 7h); the sperm cells can be observed inside

the pollen tube cytoplasm and callose plugs are also

observed along the pollen tube (Fig. 7i).

Fig. 5 Transversal sections of Miconia anthers during the first

mitosis of microgametogenesis. a, b Vacuolated microspores. c,

d Microspore first mitosis, giving rise to bicellular pollen grain.

e Young pollen grain with one vegetative cell (vc) and one parietal

generative cell (gc). Symbols: filled right triangle cell division, en

endothecium, ep epidermis, gc generative cell, ml middle layer, mt

mitochondria, nu nucleus, pw pollen wall, ta tapetum, va vacuole, vc

vegetative cell, vs vesicle. a M. pepericarpa, b M. stenostachya, c,

e M. paucidens, d M. fallax. a–d Light microscopy, e transmission

electron microscopy

P. A. Cortez et al.
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Fig. 6 Pollen grain development in Miconia species. a–d Detachment

of the generative cell (gc) from the pollen wall (pw) and gradual

rapprochement between generative cell (gc) and vegetative cell

nucleus (vcn). e Mature bicellular pollen grain with elongated

generative cell within the vegetative cell cytoplasm. f Generative cell

(gc) nucleus evidenced by DAPI reaction. g, h Pollen grain apertures:

three colpori (white arrow) alternating with three pseudocolpi (black

arrow). Note the thicker intine at the colpori. i–k Exine surface

pattern in mature pollen grains. l Exine surface masked by the great

amount of locular substance. m, n Pollen grains just before liberation

from mature anthers, in equatorial view. Note the different form and

size of hydrated (m) and dehydrated (n) forms of the pollen grains.

Symbols: filled right triangle colpi, open right triangle colpori, gc

generative cell, pw pollen wall, vc vegetative cell, vcn vegetative cell

nucleus. a, b, d, f–h, j, m, n M. paucidens, c, l M. fallax, e M.

pepericarpa, i M. latecrenata, k M. stenostachya. a–c, e–h, m,

n Light microscopy, d transmission electron microscopy, i–l scanning

electron microscopy. f, g polar view, h–l oblique equatorial view, m,

n equatorial view
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Discussion

The general structure of the pollen and anther wall devel-

opment, observed in the six species of Miconia studied here

(Table 2), are similar in relation to those seen in most

angiosperms (Maheshwari 1950; Bhandari 1984; Lersten

2004). However, Miconia species share some character

states from anther and pollen ontogeny which can be

considered consistent embryological markers for members

of the Melastomataceae, such as endothecium without

Fig. 7 Dehiscent anther and pollen grains in Miconia species. a,

b Pollen wall composed of exine (ex) and intine (in). Note thicker

intine at the apertures. c, d Septum degeneration determining the

bilocular condition of the mature anther. e–g Anther wall composed

of epidermis (ep), endothecium (en) and tapetal membrane (tm). h,

i Germinating pollen grains. Note sperm cell nucleus (white arrow)

and callose plugs (black arrow) whiting the pollen tube (pt). Symbols:

filled star pollenkitt, cl columella, co connective, cw cell wall, di

dictyosome, en endothecium, ep epidermis, er endoplasmic reticulum,

mt mitochondria, pg pollen grain, pt pollen tube, se septum, te tectum,

tm tapetal membrane, ub Ubisch body, vs vesicle. a, c, f–i M.

paucidens, b M. stenostachya, d, e M. pepericarpa. a, b, f,
g Transmission electron microscopy, c, d, h, i light microscopy
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fibrous cell wall thickenings and secretory (or glandular)

tapetum with uninucleated cells (Tobe and Raven 1983;

Schmid 1984; Medeiros and Morretes 1996; Goldenberg

et al. 2003; Melhem et al. 2003; Caetano et al. 2013a, b).

Other structural features, particularly those related to the

pollen grain development of M. albicans, M. fallax and M.

stenostachya are related with the reproductive system of

those species, as recently reported by Cortez et al. (2012)

and Caetano et al. (2013b).

The ‘‘monocotyledonous type’’ (sensu Davis 1966)

described here for the anther wall development of Miconia

species is remarkable and indicates that Melastomataceae

members present distinct patterns for this character, since

Tibouchina cerastifolia (tribe Melastomeae) and M. cabucu

Table 2 Comparative anther and pollen features of Melastomataceae species

Tribe Species Sporangium

number

Anther wall

development type

Occurrence

of crystal in

the tapetum

Locule

number in

dehiscent

anther

Releasing

pollen

grain

Exine

sculpturing

type

Pollen grain

aperture

number

Miconieae Leandra

cordifoliaa
4 Monad 6 Apertures

Miconia

albicansb
4 Monocotyledonous – 2 – – –

M. alypifoliac Monad Striate 3-Colpori and

3-pseudocolpi

M. argentead Monad

2-cellular

M. cabucue 2 Dicotyledonous 2 Monad

2-cellular

Finely

rugulate

3-Colpori and

3-pseudocolpi

M. caesiac Monad Short,

branched,

cylindrical

elements

3-Colpori and

3-pseudocolpi

M.

candolleanaf
Monad psilate 3-Colpori and

3-pseudocolpi

M. chamissoisg 4 2 Monad

2-cellular

M. fallaxb 4 Monocotyledonous – 2 Monad

2-cellular

3-Colpori and

3-pseudocolpi

M.

hondurensisc
Monad Smooth–

punctate

3-Colpori and

3-pseudocolpi

M. latecrenatab 2 Monocotyledonous – 2 Monad Perforate 3-Colpori and

3-pseudocolpi

M.

melanotrichac
Tetrad Granular–

verrucate

3-Colpori and

3-pseudocolpi

M. paucidensb 4 Monocotyledonous Druse type 2 Monad

2-cellular

Granulate–

verrucate

3-Colpori and

3-pseudocolpi

M.

pepericarpab
4 Monocotyledonous – 2 Monad

2-cellular

3-Colpori and

3-pseudocolpi

M.

rigidiusculag
Monad Psilate 3-Colpori and

3-pseudocolpi

M.

stenostachyab
4 Monocotyledonous – 2 Monad

2-cellular

Psilate 3-Colpori and

3-pseudocolpi

Symbols: – = absent, empty cells = missing information
a Subramanyam (1942)
b Present study
c Patel et al. (1984)
d Tobe and Raven (1984)
e Medeiros and Morretes (1996)
f Melhem et al. (2003)
g Caetano et al. (2013a)
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(tribe Miconieae) exhibit the ‘‘dicotyledonous type’’

(Medeiros and Morretes 1996; Medeiros and Ross 1996),

which is considered the most common type among angio-

sperms (Davis 1966). In the ‘‘monocotyledonous type’’ of

anther wall development, the outer secondary parietal layer

gives rise directly to the endothecium while the inner

secondary parietal layer divides periclinally to form the

middle layer and the tapetum. According to Schmid (1984),

the Melastomataceae anther wall development is irregular

or not characterized by the types proposed by Davis (1966)

or by other researchers. The different developmental pat-

terns observed in the anthers of phylogenetically related

species are interesting since the majority of the develop-

ment studies provide character states that are considered

conservative, especially in their early stages. Therefore, the

occurrence of ‘‘dicotyledonous’’ and ‘‘monocotyledonous’’

types in Melastomataceae, and particularly in Miconieae,

emphasizes that this character state can provide some base

for future taxonomic delimitation in this tribe.

Bisporangiate anthers described here in M. latecrenata

are the first report for Melastomataceae. The number of

microsporangia in early developmental stages of anthers

may be an interesting character state at the generic level

since Melastomataceae is a group recognized as presenting

predominantly tetrasporangiate (Tobe and Raven 1983;

Medeiros and Morretes 1996; Medeiros and Ross 1996;

Caetano et al. 2013a, b) or, less frequently, polysporangiate

(Baumgratz et al. 1996) anthers. The druse crystals

observed in tapetal cells of M. paucidens are also the first

report for Melastomataceae being described only for

Commelinaceae (Mepham and Lane 1969a, b) and Legu-

minosae (Buss and Lersten 1972), with unknown role. Both

features deserve much attention and detailed investigations

in a greater number of related species in Miconieae to

evaluate their evolutionary value for the group.

Another character state shared by Miconia species is the

presence of a layer ontogenetically recognized as endo-

thecium, although devoid of cell wall thickenings (see

Schmid 1984; Medeiros and Morretes 1996; Caetano et al.

2013a, b; present study—Table 2). Absence of an endo-

thecium as a layer in mature anthers was described for M.

cinnamomifolia, M. pusilliflora and M. latecrenata (Gold-

enberg et al. 2003). In M. latecrenata, Goldenberg et al.

(2003) observed the persistence of the outer middle layer

even after the pollen grains are completely developed,

which contradicts the results obtained here for the same

species, since we observed that the sub-epidermal and

persistent layer are derived ontogenetically as endothe-

cium. The structural and ontogenetic characteristics of the

endothecium are important for the discussion on phylogeny

of Melastomataceae since its absence has been considered

as a synapomorphy for the entire family, except Olisbeoi-

deae (Clausing and Renner 2001). Based on a purely

functional, not in an ontogenetical point of view, we can

correctly consider that the absence of endothecium in

Melastomataceae species is a strong morphological marker

because the endothecium is defined as a mechanical layer

with distinct structural specializations, closely related to

the anther dehiscence mechanisms (Batygina 2002). Nev-

ertheless, this type of information should be carefully

considered since endothecium with some kind of cell wall

thickening was observed in Tococa guianensis (DG Simão,

pers. comm.), a species also included in Miconieae. This

fact is quite common when there is little ontogenetic

information for species-rich groups like Melastomataceae.

Miconia albicans, M. fallax, M. latecrenata and M.

stenostachya are apomictic species with null or very low

amount of viable pollen grains (Goldenberg and Shepherd

1998; Goldenberg and Varassin 2001; Cortez et al. 2012;

Caetano et al. 2013a, b). The structural features observed

during the developmental stages of M. latecrenata pollen

grains are similar to those reported for M. albicans and M.

stenostachya (Cortez et al. 2012); so we can expect that M.

latecrenata exhibits at least some similar meiotic irregu-

larities as the cause of its pollen abortion. The irregularities

during pollen grain development may also be the cause of

the difficulties in recognizing the morphological patterns in

some species, as in M. hondurensis (Patel et al. 1984,

figures 35D, E) and M. alypifolia (Patel et al. 1984, fig-

ures 36A–C), since some pollen grains of these two species

were morphologically similar to the apomictic abnormal

pollen grains (Cortez et al. 2012). For the two sexually

reproducing species, M. pepericarpa and M. paucidens, the

pollen grain features are similar to those reported by Barth

and Barbosa (1975), Patel et al. (1984), Santos et al. (1997)

and Cruz-Barros et al. (2007) for the majority of the

Melastomataceae species.

Despite phylogenetic proximity, it is remarkable the

variation in the exine pattern surface among the studied

species of Miconia, which can be related to the pressures

exerted by different pollinators (Hesse 2000). The pollen

wall structure and ultrastructure reported here for M.

paucidens are the first for the whole Miconia and similar to

those reported for the closely related species Tococa

stephanotricha (Patel et al. 1984) but the evolutionary

significance of these kinds of characters in Melastomata-

ceae still depends on wider studies.

It is noteworthy that much of the information obtained

in this study is unique for Melastomataceae. The scarcity

and even the absence of information on most aspects of the

Melastomataceae pollen grains, which surprised Patel et al.

in 1984, still surprise us today, especially when considering

the large number of species in this group. The results

obtained here show that some states of embryological

characters are conserved in the group, especially those

related to the anther wall, such as the endothecium without

P. A. Cortez et al.
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cell wall thickenings and the uninucleate tapetum. Other

character states, such as the abnormal pollen grains, are

more related to the reproductive systems of the species

since the irregular pollen ontogeny observed in Miconia

albicans, M. stenostachya (Cortez et al. 2012) and M.

fallax (Caetano et al. 2013b) is determinant for the high

rate of pollen sterility in these species.

Acknowledgments We thank JY Tamashiro (IB, Unicamp) for help

with the fieldwork, MDS Ferreira (FMRP, USP) for help with the

ultrastructural procedures and Dewey Litwiller (University of Sas-

katchewan, Saskatoon, Saskatchewan, Canada) for the English revi-

sion and anonymous reviewers for their suggestions and comments.

This study was financially supported by Fundação de Amparo à
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