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ABSTRACT

Network approaches to ecological questions have been increasingly used, particularly in recent decades. The abstraction
of ecological systems – such as communities – through networks of interactions between their components indeed
provides a way to summarize this information with single objects. The methodological framework derived from graph
theory also provides numerous approaches and measures to analyze these objects and can offer new perspectives on
established ecological theories as well as tools to address new challenges. However, prior to using these methods to test
ecological hypotheses, it is necessary that we understand, adapt, and use them in ways that both allow us to deliver their
full potential and account for their limitations. Here, we attempt to increase the accessibility of network approaches by
providing a review of the tools that have been developed so far, with – what we believe to be – their appropriate uses
and potential limitations. This is not an exhaustive review of all methods and metrics, but rather, an overview of tools
that are robust, informative, and ecologically sound. After providing a brief presentation of species interaction networks
and how to build them in order to summarize ecological information of different types, we then classify methods and
metrics by the types of ecological questions that they can be used to answer from global to local scales, including methods
for hypothesis testing and future perspectives. Specifically, we show how the organization of species interactions in a
community yields different network structures (e.g., more or less dense, modular or nested), how different measures
can be used to describe and quantify these emerging structures, and how to compare communities based on these
differences in structures. Within networks, we illustrate metrics that can be used to describe and compare the functional
and dynamic roles of species based on their position in the network and the organization of their interactions as well as
associated new methods to test the significance of these results. Lastly, we describe potential fruitful avenues for new
methodological developments to address novel ecological questions.
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I. INTRODUCTION

Al-Jāh. iz. was perhaps the first scientist to provide, as
early as in the eighth century, a description of a food
chain (Egerton, 2002). About a thousand years later,
Camerano (1880) introduced the idea that the diversity
of animal forms, and therefore biological diversity itself,
can only be explained when framed in the context of
inter-relationships among species. Seminal work by Patten
(1978) and Ulanowicz (1980) suggested that the structure
of networks can approximate information on theoretical
constraints on community assembly, and helped generate
interest in the application of network science to ecology.
‘Network-thinking’ now permeates studies in ecology and
evolution (Proulx, Promislow & Phillips, 2005), and is
one of the fastest growing ecological disciplines (Borrett,
Moody & Edelmann, 2014). Network-based approaches are
gaining momentum as one of the most helpful tools for the
analysis of community structure (Poisot, Stouffer & Kéfi,
2016d ), because they offer the opportunity to investigate,
within a common formal mathematical framework, questions
ranging from the species level to the community level (Poisot
et al., 2016d ). Applying network approaches to a variety of
ecological systems, for example hosts and parasites (Poulin,

2010), or bacteria and phage (Weitz et al., 2013), yields
new methodological and biological insights, such as the
observation that networks tend to be locally nested but
regionally modular (Flores, Valverde & Weitz, 2013), which
suggests that different ecological and evolutionary regimes
are involved at different scales. Despite this long-standing
interest, the application of measures grounded in network
science is still a relatively young field (in part because the
computational power to perform some of these analyses was
largely unavailable in the early days of the field). This comes
with challenges to be tackled. First, there is a pressing need
for additional methodological developments, both to ensure
that our quantitative analysis of networks is correct, and
that it adequately captures the ecological realities that are,
ultimately, of interest. Second, we need to understand better
the limitations and domain of application of current methods.
Yet, there is a lack of a consensus on what constitutes a ‘gold
standard’ for the representation, analysis, and interpretation
of network data on ecological interactions within the framing
of specific ecological questions; i.e. which of the many
available measures actually hold ecological meaning. All
things considered, the analysis of ecological networks can be
confusing to newcomers as well as researchers who are well
versed in existing methods.
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Most notions in community ecology, including the
definition of a community (Vellend, 2010; Morin, 2011),
and several definitions of a niche (Holt, 2009; Devictor et al.,
2010), emphasize the need to study the identity of species
and their interactions simultaneously (although ecological
network analysis can be critiqued for ignoring species identity
in many instances). Studies of ecological communities can
therefore not discard or disregard interactions (McCann,
2007), and using network theory allows researchers to
achieve this goal. With the existence of methods that can
analyse (large) collections of interactions, this approach is
methodologically tractable. Graph theory (e.g. Dale & Fortin,
2010) provides a robust and well-formalized framework to
handle and interpret interactions between arbitrarily large
(or small) numbers of species. Theoretical analyses of small
assemblages of interacting species (e.g. ‘community modules’;
Holt, 1997) have generated key insights into the dynamics
of properties of ecological communities. We expect there
is even more to gain by using graph theory to account for
structure at increasingly high orders of organization (e.g.
more species, larger spatial or temporal scales), because
there is virtually no upper bound on the number of nodes
(species) or edges (interactions) it can be applied to, and
theory on large graphs can help predict the asymptotic
behaviour of ecological systems. In short, although graph
theory may appear as overwhelmingly complicated and
unnecessarily mathematical, it allows us to express a variety
of measures of the structure of networks that can be mapped
onto ecologically relevant questions.

Applying measures from network science to ecological
communities can open three perspectives (Poisot et al.,

2016d ). First, the multiplicity of measures confers additional
tools to describe ecological communities. This can reveal,
for example, unanticipated ways in which communities
differ. Second, these measures can provide new explanatory
variables to explain how ecological communities function.
The question of stability, for example, has been approached
through the analysis of empirical food webs to question
long-standing theoretical results (Jacquet et al., 2016). Finally,
and this is a new frontier in network studies, they open the
ability to predict the structure of ecological communities,
through the prediction of interactions (Desjardins-Proulx
et al., 2017; Stock et al., 2017). The domain of application of
ecological networks is as vast as the domain of application
of community ecology; but ensuring that network measures
deliver their full potential of advancing our understanding
of ecological systems requires that they are well understood,
and well used. Because of advances in graph theory, and
the availability of more efficient computational methods, the
exploration of large networks is now feasible. While this
may not be immediately useful to macrobe-based research,
microbial ecology, through sequencing, is able to generate
data sets of immense size that can be analysed with the tools
we present here (Faust & Skvoretz, 2002).

This review provides an assessment of the state of
methodological development of network science applied to
ecological communities. Taking stock of the tools available

is necessary to determine how we can best analyse data
from ecological networks. Previous work reviewed the
consequences of network structure on ecological properties
of communities and ecosystems [see Jordano & Bascompte,
2013 for mutualistic systems, Poulin, 2010 for parasites,
McCann, 2012 for food webs, or Dormann, Fründ &
Schaefer, 2017 for a recent overview], and we will not
return to these topics. Instead, we highlight areas in which
future research is needed, so as to eventually establish a
comprehensive framework for how ecological networks can
be analysed. The measures presented herein do not represent
all the measures that are available for ecological networks;
instead, they represent a core set of measures that are
robust, informative, and can be reasoned upon ecologically.
While this review does not present the entire framework
for ecological network analysis, we are confident that it
provides a solid foundation for its future development, and
that the recommendations we lay out should be used by
future studies. We have organized the measures by broad
families of ecological questions. What is the overall structure
of ecological networks? How can we compare them? What
are the roles of species within networks? How similar are
species on the basis of their interactions? How can we assess
the significance of measured values? What are emerging
questions for which we lack a robust methodology? This order
mimics the way networks are usually analysed, starting from
community-level structure, and going into the species-level
details.

II. WHAT ARE SPECIES INTERACTION
NETWORKS?

Identifying interactions across ecological entities can be done
in a variety of ways, ranging from literature survey and expert
knowledge, direct or indirect observation in the field using gut
content (Carscallen et al., 2012), stable isotopes, molecular
techniques such as meta-barcoding and environmental DNA
(Evans et al., 2016; O’Donnell et al., 2017), to modelling
based on partial data or mechanistic models. Depending on
how they were assembled, species interaction networks can
represent a multitude of ecological realities. When based
on field collection (Morand et al., 2002; Bartomeus, 2013;
Carstensen et al., 2014), they represent realized interactions,
known to have happened (unreported interactions can be true
or false absences, depending on sampling effort among other
things). Another common method is to ‘mine’ the literature
(e.g. Havens, 1992; Strong & Leroux, 2014) or databases
(e.g. Poisot et al., 2016c), to replace or supplement field
observations. In this situation, species interaction networks
describe potential interactions: knowing that two species
have been observed to interact once, there is a chance that
they interact when they co-occur. Another more abstract
situation is when interactions are inferred from a mixture
of data and models, based on combinations of abundances
(Canard et al., 2014), body size (Gravel et al., 2013; Pires et al.,
2015), or other traits (Crea, Ali & Rader, 2015; Bartomeus
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Fig. 1. Differences between (un)weighted and (un)directed graphs. Graphs (A) and (C) are undirected, and graphs (A) and (B) are
unweighted. Arrows thickness in graphs (C) and (D) represents the strength of the link.

et al., 2016). In this situation, species interaction networks
are a prediction of what they could be. In keeping with the
idea of ‘networks as predictions’, a new analytical framework
(Poisot et al., 2016b) allows working directly on probabilistic
species interaction networks to apply the family of measures
presented hereafter.

Interactions are compiled and resolved (and subsequently
assembled in networks) for a multitude of taxonomic
and organisational levels (Thompson & Townsend, 2000):
individuals (Araújo et al., 2008; Dupont et al., 2009, 2014;
Melián et al., 2014); species (Morand et al., 2002; Krasnov
et al., 2004); at heterogeneous taxonomic resolutions,
including species, genera, and more diffusely defined
‘functional’ or ‘trophic’ species (Martinez et al., 1999; Baiser
et al., 2011); groups of species on the basis of their spatial
distribution (Baskerville et al., 2011). This is because species
interaction networks are amenable to the study of all types
of ecological interactions, regardless of the resolution of
underlying data: mutualistic, antagonistic, competitive, and
so on. Recent developments made it possible to include more
than one type of interaction within a single network (Fontaine
et al., 2011; Kéfi et al., 2012), allowing greater ecological
realism in representing communities, which encompass
several types of interactions (e.g. plants are consumed by
herbivores, but also pollinated by insects). Such networks
are instances of multigraphs (in which different types of
interactions coexist). Another development accounts for
the fact that ecological interactions may have effects on
one another, as proposed by e.g. Golubski & Abrams
(2011); these are hypergraphs. Hypergraphs are useful when
interactions rely, not only on species, but also on other
species interactions: for example, an opportunistic pathogen
may not be able to infect a healthy host, but may do so
if the host’s immune system is already being compromised
by another infection. Hence it is not only species, but also
their interactions, which interact. As using these concepts
in ecological research represents a recent development,
there is little methodology to describe systems represented
as multigraphs or hypergraphs, and we will only mention
them briefly here. In a way, methodological developments
on these points are limited by the lack of data to explore
their potential. As the interest among network ecologists
will increase for systems in which the current paradigm of
species–species interactions falls short, we expect that the
inflow of data will stimulate the emergence of novel methods.

Formally, all of these structures can be represented with
the formalism of graph theory. A graph G is defined as an
ordered pair (V , E), where every element of E (the edges)
is a two-element subset of V (the nodes). From this simple
structure, we can measure a large number of properties
(see e.g. Newman, 2010 for an introduction). A simple
graph contains neither self-edges (a node is linked to itself)
or multiedges (the same two nodes are linked by more
than one type of edge), whereas a multigraph contains at
least one multiedge. As we illustrate in Fig. 1, edges can
be directed (e.g. A eats B), or undirected (e.g. A and B
compete); unweighted (e.g. A pollinates B) or weighted (e.g.
A contributes to 10% of B’s pollination). In the context of
studying ecological interactions, V is a set of ecological objects
(taxonomic entities, or other relevant components of the
environment), and E are the pairwise relationships between
these objects. As both the strengths of interactions and their
direction are highly relevant to ecological investigations,
data on species interactions are most often represented as
networks: directed and weighted graphs. We use ‘network’
as a synonym for ‘graph’ throughout. Species interaction
networks can, finally, be represented as unipartite or
bipartite networks. Unipartite networks are the more general
case, in which any two vertices can be connected; for
example, food webs or social networks are unipartite (Post,
2002; Dunne, 2006). Unipartite networks can represent
interactions between multiple groups; for example, food
webs can be decomposed into trophic levels, or trophic
guilds. Bipartite networks, on the other hand, have vertices
that can be divided into disjointed sets T (top) and B (bottom),
such that every edge goes from a vertex from T , to a vertex
from B; any ecological community with two discrete groups
of organisms can be represented as a bipartite network [e.g.
parasites and hosts (Poulin, 2010); plants and mutualists
(Jordano & Bascompte, 2013); phages and bacteria (Weitz
et al., 2013)]. It is possible to represent k-partite networks, i.e.
networks with k discrete ‘levels’. This formalism has been
used for resources/consumers/predators (Chesson & Kuang,
2008), and other plant-based communities (Fontaine et al.,

2011). Tripartite networks are usually analysed as collections
of bipartite networks, or as unipartite networks. There still
exist few data on ecological k-partite networks, and it is
therefore difficult to establish solid recommendations about
how they can be analysed; this is a part of the field in which
methodological developments are still needed and ongoing.
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Networks can be represented using their adjacency matrix
(A). For a unipartite network containing S species, A is a
square matrix of dimensions (S, S). For a bipartite network
containing T + B species, the dimensions are (T , B), and the
A matrix is usually referred to as the incidence matrix. In
both cases, the elements aij of the matrix indicate whether
species i interact with species j. In unweighted networks,
aij = 1 when i and j interact, and 0 otherwise. In weighted
networks the strength of the interaction is given, instead
of being set to unity. Note that in weighted networks, the
strength of the interaction is not necessarily between 0 and
1; if the strength of interactions depicts the raw effect of
one population on another, then it can take both negative
and positive values. The adjacency matrix is symmetrical for
undirected networks, because aij = aji . In simple networks,
the matrix diagonal is empty as there are no self-edges (which,
ecologically, could represent autophagy, breastfeeding in
mammals or cannibalism). We would like to note that A
is not the de facto community matrix: in some situations, it
can be more profitable to describe the community using its
Jacobian matrix, i.e. one in which aij represents the net effect
of species i on species j (Gravel, Massol & Leibold, 2016b;
Novak et al., 2016; Monteiro & Faria, 2016), and therefore
provides insights into the dynamics the system is expected to
exhibit.

III. WHAT CAN WE LEARN WITH ECOLOGICAL
NETWORKS?

Here, unless otherwise stated, we will focus on describing
measures of the structure of unweighted, directed networks
(i.e. either the interaction exists, or it does not; and we know
in which direction it points), to the exclusion of quantitative
measures that account for the strength of these interactions.
In most cases, quantitative variations of the measures
we present do exist (see e.g. Bersier, Banašek-Richter &
Cattin, 2002), and share a similar mathematical expression.
We think that focusing on the simplifying (yet frequently
used) unweighted versions allows one to develop a better
understanding, or a better intuition, of what the measure
can reveal. There is a long-standing dispute (Post, 2002)
among ecologists as to whether ‘arrows’ in networks should
represent biomass flow (e.g. from the prey to the predator)
or interaction (e.g. from the predator to the prey). Because
not all interactions involve biomass transfer, and because
networks may be used to elucidate the nature of interactions,
we will side with the latter convention. In general, we
will assume that the interaction goes from the organism
establishing it to the one receiving it (e.g. from the pollinator
to the plant, from the parasite to the host, etc.).

(1) How do species interact in a community?

(a) Order, size and density

During the last decades, various network measures have
been developed to characterize the general structure of

interacting communities, capturing both species identity and
their interactions (Dunne, Williams & Martinez, 2002b;
Montoya, Pimm & Solé, 2006; Allesina & Pascual, 2007;
Thompson et al., 2012). Most of these measures encompass
and supplement usual measurements in community ecology.
In addition to how many species there are, and which species
are in the local area, knowledge of their interactions is an
additional layer of information that network measures exploit
to quantify biodiversity.

A first descriptor of a network is its order (S), i.e. the total
number of nodes. If nodes are species, order measures the
species richness of the community described by the network
G. The total number of interactions (L) is the size of the
network. From these two measures is computed the linkage
density L

S
(e.g. Bartomeus, 2013), which is the mean number

of interactions per node – or simply, if a random species
is selected, how many interactions would it be expected to
have. Linkage density should be considered with caution as
it can be misleading: the distribution of interactions among
nodes in species interaction networks is rarely uniform or
normal (Williams, 2011), and a minority of species are known
to establish a majority of interactions (Dunne, Williams &
Martinez, 2002a). Moreover L is known to scale with S2

(Cohen & Briand, 1984; Martinez, 1992), at least in trophic
interaction networks.

This observation that L scales with S2 has cemented
the use of an analog to linkage density, the connectance
(Co), as a key descriptor of network structure (Martinez,
1992). Connectance is defined as L

m
, i.e. the proportion of

established interactions (L), relative to the possible number
of interactions m. The value of m depends of the type of
network considered. In a unipartite directed network, m is
S2. In a directed network in which species cannot interact
with themselves, m is S(S − 1). In an undirected network, m is
S S−1

2 if the species cannot interact with themselves, and S S+1
2

if they can. In a bipartite network, m is T × B, the product of
the number of species at each level. The connectance varies
between 0 if the adjacency matrix is empty to 1 if its entirely
filled. It is also a good estimate of community sensitivity to
perturbation (Dunne et al., 2002a; Montoya et al., 2006) as
well as being broadly related to many aspects of community
dynamics (Vieira & Almeida-Neto, 2015). Although simple,
connectance contains important information regarding how
links within a network are distributed, in that many network
properties are known to covary strongly with connectance
(Poisot & Gravel, 2014; Chagnon, 2015), and the fact that
most ecological networks ‘look the same’ may be explained by
the fact that they tend to exhibit similar connectances (Fig. 2).
Poisot & Gravel (2014) derived the minimum number of
interactions that a network can have in order for all species
to have at least one interaction. This allows us to express
connectance in the [0; 1] interval, where 0 indicates that the
network has the least possible number of interactions.

(b) Interactions repartition within the networks

The majority of real-world species interaction networks are
highly heterogeneous with regard to interactions distribution
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Fig. 2. To illustrate the strong relationship betweeen connectance and other network measures, we measured the nestedness using
η, modularity (best partition out of 100 runs), and the relative frequencies of three bipartite motifs (white, sparsely connected; grey,
partially connected; black, fully connected) in 102 pollination networks. The sparsely connected motif represents two independent
interactions. The partially connected motif represents the addition of one interaction to the sparsely connected one, and the fully
connected motif includes the addition of another interaction. All of these measures have a strong covariance with connectance, and
for this reason, the comparison of networks with different connectances must rely on randomizations. For data, methods, and code
see https://osf .io/82ypq/.

among nodes. This distribution can be studied as such
(through the degree distribution), but also reflects a particular
organization of the network, which can also be studied.
Quantitative measures of different structures have been
developed from graph theory and have played a growing role
in understanding the evolution and functioning of ecological
communities – in particular, because these measures add
a small amount of information (comparatively to measures
presented later below), they are a natural first step in moving
away from a species-centric view of community into the
arguably more realistic species-and-interactions view that
networks capture well.

If the degree of a node is its number of interactions, then
the degree distribution P (k) measures the probability that a
species has k interactions within the network. The degree
distribution can be calculated as P (k) = N (k)/S where N (k) is
the number of nodes with k interactions, and S is the total
number of species in the network. The degree distribution
allows identification of important nodes, such as potential
keystone species (Solé & Montoya, 2001; Dunne et al., 2002b),
generalists, and specialist species (Memmott, Waser & Price,
2004). In directed networks, the degree distribution can be
divided into in-degree and out-degree. These respectively
correspond to species vulnerability (e.g. number of predators
in food webs) and generality (e.g. number of resources in
food webs). It is often assumed that the distribution of degree
in networks should resemble a power law (Strogatz, 2001;
Caldarelli, 2007). In other words, the proportion P (k) of nodes
with degree k should be proportional to k−γ (but see Jordano,
Bascompte & Olesen, 2003 – a truncated power law may
be a more accurate description). Assuming that power laws
are an appropriate benchmark is equivalent to assuming
that ecological networks are structured first and foremost by
preferential attachment, and that deviation from power-law

predictions suggests the action of other factors. Dunne et al.

(2002a) found that, at least in food webs, ecological networks
tend not to be small-world or scale-free (i.e. having a specific
degree distribution; Caldarelli, 2007), but deviate from these
rules in small yet informative ways (specifically, about prey
selection or predator avoidance). Opportunistic attachment
and topological plasticity have been suggested as mechanisms
that can move the system away from predictions based on
power laws (Ramos-Jiliberto et al., 2012; Ponisio, Gaiarsa &
Kremen, 2017). We suggest that deviations from the power
law be analysed as having intrinsic ecological meaning: why
there are more, or fewer, species with a given frequency of
interactions may reveal reasons for and/or constraints on
particular species interactions.

The network diameter gives an idea of how quickly
perturbations may spread by providing a measure of how
dense the network is. Diameter is measured as the longest of
all the shortest distances (dij ) between every pair of nodes in
the graph (Albert & Barabási, 2002), where dij is the length of
the shortest path (sequence of interactions) existing between
the nodes i and j. A small diameter indicates the presence of
densely connected nodes, or hubs, hence rapid propagation
between nodes which may make the network more sensitive
to perturbation (e.g. rapid spread of a disease; Minor et al.,

2008). The diameter is relative to the number of nodes in the
network, since it relies on counting the number of interactions
in a path, which may become larger as the network order
increases. To overcome this issue, the diameter can also be
measured as the average of the distances between each pair
of nodes in the network.
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(c) Aggregation of nodes based on their interactions

From the heterogeneous repartition of interactions between
nodes in species interaction networks, certain structures and
groupings of interactions around nodes emerge. While the
degree distribution hints at how interactions are organized
around single nodes, one can frame this question at the scale
of the entire network. It is likely that other structures will
appear when multiple nodes are considered at once. This
can be done by analysing what types of relationships the
nodes (representing species, etc.) are typically embedded in
(e.g. competition, intraguild predation), through the analysis
of motifs distribution, or by determining if there are nodes
found in dense clusters or non-overlapping compartments,
forming modular communities.

Species interaction networks can be decomposed into
smaller subgraphs of n species, called motifs (Milo et al., 2002).
The smallest modules to which they can be decomposed are
three-species motifs (Holt, 1997). The relative frequencies
of each of these motifs holds information about network
structure. There are 13 possible three-node motifs in directed
networks, each representing a different relationship between
the three nodes, such as competition between A and B for a
shared resource C (A → C ← B), or a linear chain between
A, B and C (A → B → C ). Among these 13 motifs, some are
present in species interaction networks with a lower or higher
frequency that what is expected in random networks. Motif
distributions are characteristic of network type (neuronal,
electrical, social, ecological, and so on). In food webs for
example, motifs’ under- and over-representation has been
found to be consistent across different habitats (Camacho,
Stouffer & Amaral, 2007; Stouffer et al., 2007; Borrelli,
2015). In ecological networks, motifs have been referred
to as the basic building blocks of communities, as they
represent typical relationships between species. Studying
their distribution (i.e. how many of each type of motif there
is in this network) offers an opportunity to bridge the gap
between two traditional approaches (Bascompte & Melián,
2005), namely the study of the dynamics of simple modules
such as omnivory or a linear food chain (Pimm & Lawton,
1978; Holt, 1996; McCann, Hastings & Huxel, 1998), and
the analysis of aggregated metrics describing the community
as a whole. Motif distributions have been used to study
the processes underlying the assembly and disassembly of
ecological communities (Bastolla et al., 2009), as well as of the
link between communities’ structure and dynamics (Stouffer
& Bascompte, 2011). More recently, motifs have also been
used to define species’ trophic roles in the context of their
community (Baker et al., 2014) and to link this role to the
network’s stability (Borrelli, 2015).

The clustering coefficient is useful to estimate the
‘cliquishness’ of nodes in a graph (Watts & Strogatz,
1998) – that is their grouping in closely connected subsets.
It measures the degree to which the neighbours of a node
are connected (the neighbourhood of a node i is composed
of all of the nodes that are directly connected to i). In other
words, it gives an idea of how likely it is that two connected
nodes are part of a larger highly connected group or ‘clique’.

Two different versions of the clustering coefficient (CC ) exist.
First, it can be defined locally, for each node i (Watts &
Strogatz, 1998). In this case cci = 2Ni

ki(ki−1)
where ki is i’s degree

(its number of neighbours) and N i is the total number of
interactions between i’s neighbours. It describes the fraction
of realized interactions between i’s neighbours and thus
varies between 0 (none of i’s neighbours are connected)
and 1 (all of them are connected, forming a ‘clique’). From
this measure, we can calculate the average local clustering
coefficient: CC1 =

∑
ci

S
where S is the total number of

nodes. This first version describes the ‘cliquishness’ of a
typical neighbourhood, but has the drawback of giving more
influence to nodes with a small degree. Nevertheless, the
clustering coefficient provides a way of characterising the
structure of the graph through the analysis of CCk , which is
the average of the cci of all nodes of degree k, and specifically
of the distribution of CCk across multiple values of k. The
clustering coefficient can also be defined globally, for the
entire graph (Soffer & Vazquez, 2005; Saramäki et al., 2007)
and is calculated as CC2 = 3Nt

Nc
, where N t is the number of

triangles in graph G (a is connected to b and c, b to a and c, and
c to a and b) and N c is the number of three-node subgraphs
(e.g. a is connected to b and c, b and c are connected to a but
not to each other). Kim (1993) suggested that this property
of a network can be used to infer competition, but this has to
our knowledge received little attention in ecology.

Whereas clustering analysis gives information about the
grouping of nodes within their immediate neighbourhood
(but no information about the identity of nodes in this
neighbourhood), a measure of modularity gives similar
information at a larger scale (Gauzens et al., 2015). Network
modularity measures how closely connected nodes are
divided into modules, also called compartments (Olesen
et al., 2007). A module is defined as a subsystem of
non-overlapping and strongly interacting species (see Fig. 3,
matrices C and D for a comparison of the structures
of modular and non-modular matrices). The modular
structure of graphs has been studied because of its
dynamical implications, in that modularity promotes stability
by containing perturbations within a module, thereby
constraining their spreading to the rest of the community
(Stouffer & Bascompte, 2010, 2011). This has been a key
argument in the diversity–stability debate (Krause et al.,
2003). A major challenge when studying the modularity of
species interaction networks is to find the best subdivision of
the network. Several methods have been developed for this
purpose, including the optimization of a modularity function
(Newman & Girvan, 2004; Newman, 2004; Guimerà,
Sales-Pardo & Amaral, 2004; Guimerà & Amaral, 2005;
Guimerà & Nunes Amaral, 2005). The principle underlying
this function is to find the optimal subdivision that maximizes
the number of interactions within modules while minimizing
the number of interactions between modules. The calculated
modularity is then compared with a null model that has the
same number of links and nodes, with the links connected
to each other randomly. Modularity optimization has a
resolution limit (in that its performance decreases with the
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Fig. 3. Illustration of the nested and modular structure of
networks, represented as matrices. (A) is a perfectly nested
matrix; in (B), three interactions (in grey) have been displaced
to lose the perfectly nested structure. (C) is a perfectly modular
network; in (D), three interactions have been displaced to lose
the modular structure.

size of the network) making it less reliable for large species
interaction networks (Fortunato & Barthelemy, 2007); there
are methods designed specifically to work on thousands of
nodes and more [see e.g. Liu & Murata, 2009 and Blondel
et al., 2008]. To compare outcomes of different modularity
measurements, it possible to use an a posteriori method. In
a network where modules are already found, the realized
modularity (Q ′

R) measures the proportion of interactions
connecting nodes within modules (Poisot, 2013). This is
expressed as

Q ′
R = 2 × W

L
− 1, (1)

where W is the number of interactions within modules,
and L is the total number of interactions. This takes on
a value of 1 when modules are disconnected from one
another (which is not true of other modularity functions that
account for the probability of establishing an interaction).
This measure can take on negative values if there are more
interactions between modules than within them, which can
be viewed as a non-relevant partitioning of the community.

(d ) Nestedness

Species interaction networks can also present a nested
structure (see Fig. 3, matrices A and B for a comparison
of the structures of nested versus non-nested matrices), where
the species composition of small assemblages are subsets of
larger assemblages. In food webs, a nested structure occurs
when the diet of the specialist species is a subset of the diet

of the more generalist species – and where the predators
of species are nested as well. The analysis of nestedness
has revealed ecological and evolutionary constraints on
communities. For example, it has been hypothesized that
a nested structure promotes greater diversity by minimizing
competition among species in a community (Bastolla et al.,
2009). Various metrics have been developed to quantify
nestedness (Ulrich, 2009; Ulrich, Almeida-Neto & Gotelli,
2009). Most are based on the principle that when a matrix
is ordered by rows and columns (that is descending in
rank from above and from the left) a nested network will
present a concentration of presence data in the top-left
corner of the matrix, and a concentration of absence data in
the opposite corner [see Staniczenko, Kopp & Allesina,
2013 for an exception; see Fig. 3C]. Numerous studies
(Rodriguez-Girones & Santamaria, 2006; Fortuna et al.,
2010; Flores et al., 2011) use the proportion of unexpected
presence or absence in the matrix to quantify nestedness.
Seemingly the most widely used measure of nestedness
is nestedness measure based on overlap and decreasing
fills (NODF), as suggested by Almeida-Neto, Guimarães &
Lewinsohn (2007). Bastolla et al. (2009) suggested that η can
complement NODF, in that η does not require a re-ordering
of the nodes (i.e. there is no need to put the most densely
connected nodes first, and the least densely connected nodes
last). As per Bastolla et al. (2009), η is defined as:

η (A) =
∑

i<j ni,j∑
i<j minimum

(
ni , nj

) , (2)

where nij is the number of common interactions between
species i and j, and ni is the number of interactions of
species i. Note that this formula gives the nestedness of rows
with regard to the columns, though one can also measure
the nestedness of columns with regard to rows as η(A

′
),

and calculate the nestedness of the whole system as the
average of these two values. We suggest that, since it does
not rely on species re-ordering, η can be used over NODF
or other nestedness measures. There are some caveats to
this argument, however. First, the number of permutations
for NODF is known, and for species-poor networks, they
can be computed in a reasonable time. Second, NODF
can help understanding how different orderings of the
matrix (e.g. using traits instead of degree) contributes to
nestedness – if this is the question of interest, then NODF
is the logical choice (Krishna et al., 2008). Once ordered
by degree, NODF and η are identical (with the exception
that NODF accounts for decreasing fill, whereas η does
not). Finally, η has the undesirable property of always giving
the same value depending only on the degree distribution.
Therefore, any permutation of a network that maintains
the degree distribution will give the same value of η, which
greatly impedes hypothesis testing.

(e) Intervality

A last measure of the structure of species interaction networks
is their intervality. The first step in calculating intervality is to
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identify a common trait along which nodes can be ordered.
This can be body mass in the case of food webs, but can also
be a property derived from their position in the network, such
as their degree; indeed, a nested bipartite network is interval
when species are organized by decreasing degree. Intervality
then measures how well interactions of all species can be
described by this trait. A network is ‘interval’ when it can be
fully explained by one dimension (trait). An interval food web
with species ordered by their body mass, as an example, has
predator eating a consecutive range of prey, that all fall into a
range of body masses (Eklöf & Stouffer, 2016), or are closely
related from a phylogenetic standpoint (Eklöf & Stouffer,
2016). Most unipartite ecological networks are close to being
interval with one or several dimensions, such as defined by
body size (Zook et al., 2011) or arbitrary traits derived from
the interactions themselves (Eklöf et al., 2013). There are
several methods to quantify a network’s intervality. Cattin
et al. (2004) quantified the ‘level of diet discontinuity’ using
two measures: (i) the proportion of triplets (three-species
matrix) with a discontinuous diet (i.e. at least one species
gap), in the whole food web (Ddiet ), and (ii) the number of
chordless cycles (Cy4 ). A cycle of four species is considered as
chordless if at least two species out of the four are not sharing
prey, so the diets cannot be totally interval. Nevertheless,
these two measures only give a local estimation of intervality.
Stouffer, Camacho & Amaral (2006) proposed to measure
the intervality of the entire network by re-organizing the
interaction matrix to find the best arrangement with the
fewest gaps in the network. This is a stochastic approach that
by definition does not guarantee finding the global optimum,
but has the benefit of working at the network scale rather
than at the scale of triplets of species.

(2) How are communities different?

Detecting spatial and temporal variation in ecological net-
works, and associating these variations with environmental
factors, may yield insights into the underlying changes in
ecosystem functions, emergent properties, and robustness to
extinction and invasion (Tylianakis, Tscharntke & Lewis,
2007; Tylianakis & Binzer, 2013). These efforts have been
hindered by the difficulty of quantifying variation among
interaction networks. The challenge lies in finding a meaning-
ful way to measure the dissimilarity between networks (Dale
& Fortin, 2010). Given the ecological properties or processes
of interest, a direct comparison – not always computation-
ally tractable – may not be necessary. Hence, networks can
be indirectly compared through their properties (e.g. degree
distribution, connectance, nestedness, modularity, etc.). Mul-
tivariate analyses of network metrics have been used to
estimate the level of similarity between different networks
(Vermaat, Dunne & Gilbert, 2009; Baiser et al., 2011), while
null models were used to compare observed values statisti-
cally to their expected random counterparts (e.g. Flores et al.,
2011).

In the situation where several networks share a large
enough number of species, one can alternatively compare
how these shared species interact. This approach can be

particularly useful along environmental gradients (Tylianakis
et al., 2007; Tylianakis & Morris, 2017). It represents a
second ‘dimension’ of network variability, where in addition
to changes in higher order structure, changes at the
scale of species pairs within the networks are accounted
for. This variation is more readily measured through a
different approach to sampling, where instead of relying on
the sampling of a large number of networks in different
environments, efforts are focused on the same system at
reduced spatial or temporal scales. The development of
methods to analyse replicated networks is still hampered
by the lack of such data; this is especially true in food
webs. Replicated food webs based only on knowledge
of the local species and their potential interactions (e.g.
Havens, 1992) are not always appropriate: by assuming that
interactions always happen everywhere, we do not capture
all sources of community variation (in addition to the issue of
co-occurrence being increasingly unlikely when the number
of species increases). Sampling of ecological networks should
focus on the replicated documentation of interactions within
the same species pool, and their variation in time and space
(Poisot et al., 2012; Carstensen et al., 2014; Olito & Fox,
2015), as opposed to relying on proxies such as comparison
of different communities across space (Dalsgaard et al., 2013),
or time (Roopnarine & Angielczyk, 2012; Yeakel et al., 2014).

Analysis of network structure measures has so far played
a central role in the comparison of networks and in the
search for general rules underpinning their organization
(Dunne, 2006; Fortuna et al., 2010). Notably, the number of
species affects the number of interactions in real ecological
networks (Martinez, 1992; Brose et al., 2004), and thus many
other network properties (Dunne, 2006). Some measures of
network structure covary with expected ecological properties,
such as species abundance distributions (Blüthgen et al., 2008;
Vázquez et al., 2012; Canard et al., 2014), network size and
sampling intensity (Martinez et al., 1999; Banašek-Richter,
Cattin & Bersier, 2004; Chacoff et al., 2012). This issue
can seriously limit the interpretation of network measures
and their use for network comparison. Furthermore, most
of these measures are highly correlated among themselves:
Vermaat et al. (2009) reported that network variation can
be reduced largely along three major axes related to
connectance, species richness (which is tied to connectance
because the number of interactions scales with the number of
species) and primary productivity (which is hard to measure,
and is not easily defined for all systems). More recently,
Poisot & Gravel (2014) and Chagnon (2015) showed that
because of constraints introduced by the interaction between
connectance and network size, the covariation of the simplest
measures of network structure is expected to be very strong.
As a consequence, it is barely possible to make robust
network comparisons using the variations in these basic
descriptors. We therefore need to go beyond these global
network properties, and find meaningful alternatives that
allow a better understanding of the ecological differences
between networks.

Biological Reviews 94 (2019) 16–36 © 2018 Cambridge Philosophical Society



Analyzing ecological networks 25

(a) Higher order differences in structure

Other methods accounting for the structure of the entire
network have been developed. For example, some methods
are based on the frequency distribution of small subnetworks
including network motifs (Milo et al., 2002) and graphlets (a
more general definition of motifs; Przulj, 2007; Yaveroğlu,
Milenković & Pržulj, 2015). The method of graph edit
distance gives edit costs (each modification to the graph
counts for one unit of distance) for relabelling nodes, as
well as insertion and deletion of both nodes and interactions
(Sanfeliu & Fu, 1983), and therefore provides a well-defined
way of measuring the similarity of two networks (this method
has not been widely used in ecology). Other suitable
measures to determine network similarity are based on
graph spectra (Wilson & Zhu, 2008; Thorne & Stumpf,
2012). Spectral graph theory [which is yet to be applied
comprehensively to the study of species interaction networks,
but see Lemos-Costa et al., 2016] characterizes the structural
properties of graphs using the eigenvectors and eigenvalues
of the adjacency matrix or the closely related Laplacian
matrix (the Laplacian matrix, defined as D − A, wherein
D is a matrix filled with 0s in the off-diagonal elements,
and the degree of each node is on the diagonal, accounts
both for network structure and for degree distribution).
Some methods allow the algorithmic comparison of multiple
networks with no species in common (Faust & Skvoretz, 2002;
Dale & Fortin, 2010), and are primarily concerned with the
overall statistical, as opposed to ecological, properties of
networks.

(b) Ecological similarity and pairwise differences

All of the aforementioned methods focus on the mathematical
similarity of networks rather than their ecological similarity.
To fill this gap, Poisot et al. (2012) presented a framework for
measurement of pairwise network dissimilarity, accounting
both for species and interactions turnover through
space, time or along environmental gradients. Following
Koleff, Gaston & Lennon (2003), this approach partitions
interactions in three sets: shared by both networks, unique
to network 1, and unique to network 2. The β-diversity can
be measured by comparing the cardinality of these three
sets to reflect symmetry of change, gain/loss measures,
nestedness of interaction turnover, etc. This method of
network β-diversity can also be extended to multiple network
comparisons using their relative difference from the same
meta-network. While many measures of β-diversity exist
to analyse compositional data, there is still a lack of a
comprehensive methodology regarding their application to
networks. A large part of this stems from the fact that species
interactions require the species pair to be shared by both
communities, and consequently some analyses require that
the species pair is shared by two communities: measures of
network β-diversity are strongly constrained by the structure
of species co-occurrence. If no species pairs co-occur, or if no
two networks have common species, these methods cannot
give informative results (the dissimilarity being, by default,

complete) – as of now, this suggests that a tighter integration
of these methods with research on compositional turnover
is needed, especially to understand the threshold of shared
species below which they should not be applied. In addition,
none of the current methods seem sufficient to characterize
the structure for a meaningful comparison and to extract
information hidden in the topology of networks (as they
ignore network-level structure, i.e. emerging from more than
direct interactions), and the development of future methods
that work regardless of species composition seems like a
straightforward high-priority topic. Finally, this framework
would benefit from a better integration with quantitative
measures. Using Bray-Curtis (or equivalent) measures to
assess difference between networks for which interaction
strengths are known would allow us to quantify dissimilarity
beyond the presence or absence of interactions.

(3) What do species do?

Not all species in large communities fulfill the same ecological
role, or are equally important for processes and properties
acting in these communities. As species interactions are a
backbone for fundamental mechanisms such as transfer of
information and biomass, one can expect that the role of a
species reflects its position within its community, organized
by trophic level, abundance, body size or other ecologically
meaningful organizing principles. In species interaction
networks, it is possible to measure the position and the
role of species in different ways, giving different ecological
information.

(a) Centrality

Centrality is a measure of how ‘influential’ a species is, under
various definitions of ‘influence’. It has been used to identify
possible keystone species in ecological networks (Jordán &
Scheuring, 2004; Martín González, Dalsgaard & Olesen,
2010). We note that the ability of network structure measures
to identify keystone species is highly dubious; the canonical
definition of a keystone species (Paine, 1969) requires
knowledge about biomass and effects of removal, which are
often not available for network data, and makes predictions
that are primarily about species occurrences. These measures
may be able to identify list of candidate keystone species, but
this requires careful experimental/observational validation.
Nevertheless, knowledge of network structure allows us to
partition out the effect of every species in the network.
For example, in networks with a nested structure, the core
of generalist species have higher centrality scores, and the
nested structure is thought to play an important role for
network functioning and robustness (Bascompte et al., 2003).
We provide an illustration of some centrality measures in
Fig. 4. In this section, we review five measures of centrality:
degree, closeness, betweenness, eigenvector, and Katz’s.

Degree centrality (CD(i) = ki ; Freeman, 1977) is a simple
count of the number of interactions established by a species.
In directed networks, this measure can be partitioned
between in-degree (interactions from others to i) and
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Betw. Eigen. Degree Close.

0.36 0.15 0.12 0.18

0.13 0.12  0.12

0.32 0.17 0.19 0.17

Fig. 4. On the simple graph depicted at the top (nodes of
the same shade have the same centralities), we measured
centrality using betweenness, eigen centrality, degree centrality,
and closeness. The values have been corrected to sum to unity.
The value in bold gives the most central family of nodes for the
given measure. This example illustrates that different measures
make different assumptions about what being ‘central’ means.
The dark-grey nodes do not have a betweenness centrality value;
some software returns 0 for this situation.

out-degree (interaction from i to other). It is a local measure,
that quantifies the immediate influence between nodes.
As an example, in the case of a disease, a node with
more interactions will be more likely both to be infected
and to contaminate more individuals (Bell, Atkinson &
Carlson, 1999). To compare species’ centrality, CD has to be
normalized by the maximum degree (〈CD〉 = CD/kmax).

Closeness centrality (CC ) (Freeman, 1978; Freeman,
Roeder & Mulholland, 1979) measures the proximity of
a species to all other species in the network, and is therefore
global in that, although defined at the species level, it
accounts for the structure of the entire network. It is based
on the shortest path length between pairs of species and thus
indicates how rapidly/efficiently a node is likely to influence
the overall network. The node with the highest CC is closer
to all other nodes than any other nodes and will thus affect
more rapidly the overall network if, for example, there is
a perturbation (Estrada & Bodin, 2008). Formally, CC is
defined as

CC (i) =
∑
j �=i

n − 1
dij

, (3)

where dij is the shortest path length between i and j, and n is
the number of species.

Betweenness Centrality (CB ) (Freeman, 1977) describes the
number of times a species is between a pair of other species,
i.e. how many paths (either directed or not) go through it.
This measure is thus ideal to study the influence of species

loss on fragmentation processes, for example (Earn, 2000;
Chadès et al., 2011; McDonald-Madden et al., 2016). Nodes
with high CB values are considered as module connectors in
modular networks. The value of CB is usually normalized by
the number of pairs of species in the network excluding the
species under focus, and is measured as

CB (i) = 2 ×
∑

j<k;i �=j

gjk (i) /gj,k

(n − 1) (n − 2)
, (4)

where gjk is the number of paths between j and k, while gjk (i)
is the number of these paths that include i.

Eigenvector centrality (CE ; Bonacich, 1987) is akin to a
simulation of flow across interactions, in which each species
influences all of its partners simultaneously. It then measures
the relative importance of species by assigning them a score
on the basis that an interaction with more influential species
contributes more to a species’ score than the same interaction
with a low-scoring species (Allesina & Pascual, 2009). From
a graph adjacency matrix A, the eigenvector centrality of
species i is given by

CE (i) = 1
λ

∑
j

AijCE

(
j
)

, (5)

where Aij is the adjacency matrix, which takes 1 if i interacts
with j and 0 otherwise, and λ is a constant. This can be
rewritten as the eigenvector equation: AC = λC , wherein c is
the vector of all values of CE . As all values of CE have to
be positive, as per the Perron-Frobenius theorem, λ is the
greatest eigenvalue of A.

Finally, Katz’s centrality (CK ; Katz, 1953) is a measure
of the influence of a node in the network. This measure
takes into account all the interactions connecting a node to
its neighbourhood. However, an immediate neighbour has
more weight than a distant one. CK is defined as

CK (i) =
∞∑

k=1

n∑
j=1

αkAk
ij , (6)

wherein α is the attenuation constant, and k is the length of
the paths between i and j. The α value is between 0 and
1/λ, where λ is the largest eigenvalue of A. Larger values
of α give more importance to distant connections, thus
allowing this measure to function either locally (immediate
neighbourhood) or globally (entire graph). CK can be used
in directed acyclic graphs (e.g. trees), which is not true of
CE . This is also the only measure to have a probabilistic
equivalent (Poisot et al., 2016b).

Studying different measures of centrality provides
important information regarding the roles of certain
species/nodes. As an example, a species may have a low CD

and a high CB , meaning that it plays a key role in connecting
species that would not be connected otherwise even if it does
not interact with them directly. A low CD and a high CC

means that the species has a key role by interacting with
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important species. Because the absolute values of centrality
vary with network size and connectance, Freeman et al. (1979)
suggested that the centralization measure, rarely applied in
ecology, be used when comparing centrality across networks.
Centralization is defined, for any centrality measure Cx, as
the sum of the differences between each node’s centrality,
and the highest centrality value [

∑
(Cx(i) − max (Cx))]. This

measure is then divided by the maximal possible value of
centralization for a network with the same number of nodes
and interactions, which in turn depends on the formulae
used to measure centrality, and can be estimated based on
random draws of the networks.

(b) Species roles in the network

Species functional roles can be reflected in the interactions
they establish (Coux et al., 2016), providing a clear bridge
between network approaches and functional ecology studies.
Functional traits are known to be correlated with the position
of species in the network, either because they intervene
directly in the interaction (Brose et al., 2006a; Alexander,
Dick & O’Connor, 2013), constraining the set of possible
interactions or their frequency, or because phenological
incompatibilities prevent the interaction from happening
(Olesen et al., 2011). For instance, Petchey et al. (2008a) used
allometric scaling of body size and foraging behaviour of
individual consumers to predict species interactions. Scaling
up to multiple traits, one can group species into functional
clusters, based on their similarity. The distribution of some
species-level network measures (e.g. centrality, degree) can
then be compared within and across groups (Petchey &
Gaston, 2002). This method usually does not account directly
for interactions between species (Petchey et al., 2008a) but
is useful when studying a process for which the influential
traits are known, or to test the importance of a particular
(complex of) traits on a function. Note that one can, in this
situation, adopt a very generous definition of what constitutes
a trait: spatial grouping of species (Baskerville et al., 2011) for
example, is one example in which examining interactions in
the light of species attributes provides ecological insights.

If external information on species traits is absent, the role
of a species can be approached through the interactions
it establishes within the network: species with similar
interactions are often grouped into trophic species, and
these can be assumed to have similar traits or lifestyles
(this approach has mostly been used in food webs). Indeed,
many food-web models (Williams & Martinez, 2000; Cattin
et al., 2004) predict interactions between trophic groups, and
not between species. Lumping species within trophic groups
maintains the heterogeneity of interactions across groups,
but removes all variability of interactions between species
within the groups. As a consequence, species that bring
unique interactions to a trophic group may be overlooked.
Dalla Riva & Stouffer (2015) suggested an alternative to this
approach: species positions are analysed before clustering
them into groups (i.e. there is a measure of position for every
species), allowing explicit investigation of species interactions
while avoiding obfuscation of the variance within groups.

Coux et al. (2016) measured the functional role of
species, by applying functional dispersion (FDis) (Laliberté &
Legendre, 2010) to the adjacency or incidence matrix of the
network. Under this framework, as in Mouillot et al. (2013),
the uniqueness of a species is hinted at by its distance to the
centroid of all other species. We argue that this approach
should be questioned for two reasons. First, it is sensitive to
the ordination choices made. Second, it is not clear how it
allows the comparison of results across different networks:
not only does the position of a species vary in relation to
other species in the network, it varies from one network to
another. Note that centrality measures are not necessarily
better at identifying which species are unique: as we show
in Fig. 4, for some measures, non-unique nodes have high
centrality values. We argue that the development of measures
for node uniqueness should receive increased attention. In
particular, measures that rely on ordination only account
for first-order interactions, i.e. direct interactions between
species. As a consequence, a large part of the network
structure, which emerges through consideration of longer
chains of interactions, is not accessible via these methods.

Looking at network motifs is a promising way to address
species functional roles and node uniqueness. Motifs are all
the possible ways a fixed number of species (usually three or
four) can interact. Within these motifs, species can occupy
a variety of unique positions; for example, within a linear
food chain, there are three distinct positions (bottom, middle,
top), whereas a trophic loop has a single unique position.
Within motifs with three species, 30 unique positions can
be identified (Stouffer et al., 2012), and for each species, its
frequency of appearance at each of these positions within
networks has been shown to be an inherent characteristic
conserved through its evolutionary history. This method has
the advantage of grouping species that may be different in
terms of guild or partners, but that contribute in the same
way to the structure of the community. Based on this vector
it is possible to identify species statistically that exhibit similar
profiles. Motif positions tend to be well conserved both in
time (Stouffer et al., 2012) and space (Baker et al., 2014),
making them ideal candidates to be investigated alongside
functional traits and phylogenetic history.

(c) Partition based on modularity

In large communities, some species are organized in modules
(see Section II.1c), within which they interact more frequently
among themselves than with species of the same overall
network but outside their module. Guimerà & Nunes Amaral
(2005) proposed that when functional or topological modules
can be found in large networks, the functional role of a species
can be defined by how its interactions are distributed within
its module and with other modules. To identify these roles,
the first step is to identify the functional modules of a large
network. The profile of species interactions is determined by
using two measures.
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First, the z-score quantifies how well-connected a species
i is within its module m,

zi = Ki − Kmi

σKmi

, (7)

where K i is the degree of i within its module mi ; K mi
is the

average of K over all species of mi and σKmi
is the standard

deviation of K in mi .
Second, the participation coefficient (PC) describes the

profile of i’s interaction with species found outside of the
module m,

PCi =
Nm∑

m=1

(
Kis

ki

)2

, (8)

where ki is the total degree of species i, meaning a count
of all its connections, inter- and intra module. The PC of a
species therefore varies between 0 (all interactions are within
the module) and 1 (all interactions are uniformly distributed
among all modules). The use of these indices is based on the
assumption that species with similar interactions have similar
traits and so are expected to play the same functional role.

Olesen et al. (2007) used these two values to divide species
into four groups, based on a cutoff for z (2.5) and for PC
(0.62). Species with low z and low PC are ‘peripherals’ – they
are not well connected within or between modules. Species
with low z and high PC connect well between, but not
within, modules, and are ‘connectors’. Species with high z
and low PC are ‘module hubs’, well connected within their
own modules but not with the outside. Finally, species with
high z and high PC are ‘network hubs’, connecting the
entire community. In their analysis of plants and pollinators,
Olesen et al. (2007) revealed that pollinators tend not to be
module hubs, and are also less frequently network hubs than
plants are.

(d ) Contribution to network properties

As species make differential contributions to network
structure and processes, the removal of certain species will
therefore have a greater effect on the community’s stability
and functioning, and these species are therefore stronger
contributors to these processes. Differential contribution to
several processes can be estimated in multiple ways: by
performing removal/addition experiments in real ecological
systems (e.g. Cedar creek or BIODEPTH experiments), by
analysing the effect of a species extinction within empirical
(Estrada & Bodin, 2008) or simulated (Berlow et al., 2009)
systems, by using a modelling approach and simulating
extinctions (Memmott et al., 2007), or by analysing the
statistical correlation between an ecosystem property and
species functional roles (Thompson et al., 2012). Another
way to quantify the contribution of a species to a property
P is to compare it to its contribution to the same property
when its interactions are randomized (Bastolla et al., 2009).
This method allows studying the contribution of a species’
interactions, as the variation of interactions is intuitively

expected to be faster than the variation of species. Indeed,
because interactions require species to co-occur, because
there are far more interactions than species, and because
interactions have a dynamic of their own, whether there will
be more signal in interactions than in species presence is
an hypothesis that should be tested on empirical systems in
priority.

The contribution of a species to a given network measure
after its interactions are randomized is

ci =
(
P − 〈

P∗
i

〉)
σP∗

i

, (9)

where P is the property (nestedness, modularity, productivity,
...),

〈
P�

i

〉
and σP∗

i
are the average and standard deviation,

respectively, of the property across a set of random replicates
for which species i interactions have been randomized. The
effects of several traits or structural properties of species (such
as centrality or species trophic roles) on their contributions
to a given measure can then be analysed.

(4) How similar are species interactions?

Some species exhibit a much larger set of interactions than
others or form denser clusters within the network. One of
the many challenges of ecology is to understand the causes
and consequences of such heterogeneous species interactions.
Species are, first and foremost, related by their phylogenetic
history. We will not address this aspect here, because it
does not easily integrate with network theory. We encourage
readers to refer to Cadotte & Davies (2016) instead.

One way in which the heterogeneity of species interactions
is quantified is through analysis of the overlap in their
partners, known as ecological similarity. For simplicity, we
will use the vocabulary derived from trophic networks, but
these methods can also be applied to other types of ecological
networks. Ecological similarity between species is a widely
used concept that quantifies the resemblance between two
species or ‘biotic interaction milieu’ (McGill et al., 2006)
and allows analysing processes ranging from species niche
(Elton, 1927) and community assembly (Piechnik, Lawler
& Martinez, 2008; Morlon et al., 2014) to trophic diversity
(Petchey & Gaston, 2002). The simplest and most widely
used measure of pairwise ecological similarity is the Jaccard
coefficient (Legendre & Legendre, 2012):

SJ = a

a + b + c
, (10)

where a is the number of shared partners, b the number
of species that interact with only the first species and c
with only the second species (for variations, see Legendre
& Legendre, 2012). The Jaccard similarity coefficient is
widely used to estimate ecological similarity and competition
between species (Rezende et al., 2009) but does not account
for the shared absence of interactions (but see Chao et al.,
2005). This is not a severe issue, as ecological networks
tend to be extremely sparse, and therefore shared absence
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of interactions may not be informative. The similarity index
has to be chosen with care depending on the focus of
the study. In the general equation above, consumers and
resources are seen as perfectly equivalent (additively), but,
in directed networks, it can be adapted to include consumer
and resources as different dimensions of trophic activities
and/or for dynamical food webs by including information
about flows (Yodzis & Innes, 1992). Once a similarity matrix
is formed from all pairwise measurements, a hierarchical
clustering can be performed to build a dendrogram, which
gives information about the trophic diversity of species within
a community and the relative uniqueness of species (but
see Petchey et al., 2008b). Cophenetic correlation (Sokal &
Rohlf, 1962) can then be used to analyse how well several
dendrograms, built using different methods, preserve the
similarity between species (Yodzis & Winemiller, 1999). The
similarity of overall communities can also be estimated
to see how similar, or dissimilar, species within it are
when compared to null models (Morlon et al., 2014). For
this purpose, the mean or maximum pairwise similarity is
averaged across the whole network under consideration.

(5) Is any of this significant?

Most network properties tend to be colinear, specifically
because they covary with connectance. For example, the
number of interactions in a network with a known number of
species will limit the possible values of nestedness, modularity,
and so on (Poisot & Gravel, 2014). As such, the value of any
measure of network structure often needs to be compared
to a range of possible values under a null model. The
purpose of the null model is to search the null space of
possible randomized networks (Fortuna et al., 2010), in a way
that would yield an unbiased distribution of the measure
of interest, to which the observed value is then compared.
In practice, this approach is constrained by (i) the size of
the null space to search, and specifically the fact that it
varies with connectance (Poisot & Gravel, 2014), and (ii) the
computational burden of a thorough null space exploration.

A large number of studies use the null hypothesis
significance testing (NHST) paradigm to assess the
significance of an observed value of network structure. NHST
works by generating randomized networks under a variety
of constraints, measuring the property of interest on these
randomizations, then commonly using a one-sample t-test
with the value of the empirical measure as its reference.
This is justified because, through the mean value theorem,
the application of enough randomizations should yield
a normal distribution of the simulated network measure
(see Flores et al., 2011). Bascompte et al. (2003) used a
probabilistic sampling approach, where the probability of
drawing an interaction depends on the relative degree of
the species; Fortuna & Bascompte (2006) used the same
approach, with the distinction that all interactions have the
same probability (equal to connectance). Drawing from a
probability distribution in this manner has a number of
shortcomings, notably the fact that some species can end
up having no interactions, thus changing the network size

[which Fortuna et al., 2010 termed ‘degenerate matrices’].
An alternative approach is to use constrained permutations,
where pairs of interactions are swapped to keep some quantity
(the overall number of interactions, the degree of all species,
and so on) constant. This approach is used in null models
for species occupancy (Gotelli, 2000; Gotelli & Entsminger,
2003; Ulrich & Gotelli, 2007). Stouffer et al. (2007) used an
intermediate approach, where swapping was done as part of
a ‘simulated annealing routine’, to give the algorithm enough
leeway to explore non-optimal solutions before converging
(as opposed to just swapping, which has no definition of
the optimality of a solution). As of now, there are no
clear recommendations as to which approach to sample the
null space is the most efficient (or computationally feasible
for large network sets), emphasizing the need for a more
exhaustive comparison of the behaviour of these methods.

(a) Hypotheses underpinning topological null models

The most frequently used null models are topological, i.e.
they can search the null space based only on the matrix, and
do not rely on ecological processes to generate random
networks. We will focus on the subset of null models
which generate a probability of observing an interaction
based on different aspects of network structure; these
probabilistic networks can be analysed directly or, as is most
commonly done, converted into binary networks through
random draws. There are three broad categories of null
models (commonly used for bipartite networks) – based
on connectance, based on degree distribution, and based
on marginal degree distribution. Each family embodies a
specific hypothesis about the sources of bias on the measured
property.

Type I (Fortuna & Bascompte, 2006) null models are
focused on connectance, where the probability of any two
species i and j interacting is fixed as

Pi→j = |E|
|T | × |B| , (11)

where T and B are vertices from the
‘top’ (T = {v ∈ V , kin(v) = 0}) and ‘bottom’
(B = {v ∈ V , kout(v) = 0}) levels of the network (these
methods were originally applied to bipartite networks). This
model assumes that interactions are distributed at random
between all species, without considering the degree of the
species. Deviation from the predictions of this model indicate
that the network measure of interest cannot be predicted by
connectance alone.

Type II (Bascompte et al., 2003) null models add an
additional level of constraint, in that they respect the degree
distribution of the network (in-degree kin; out-degree kout). In
a Type II network,

Pi→j = 1
2

(
kin

(
j
)

|T | + kout (i)

|B|

)
, (12)
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meaning that the interaction is assigned under the hypothesis
that i distributes its outgoing interactions at random, and
j receives its incoming interactions at random as well.
In this model, species with more interactions have a
higher probability of receiving interactions in the simulated
network. This respects both the distribution of generality and
vulnerability. Deviation from the predictions of this model
indicate that the network measure of interest cannot be
predicted by the degree distribution alone.

Finally, Type III null models account for only one side of
the degree distribution, and can be defined as Type III in,
wherein

Pi→j = kin
(
j
)

|T | , (13)

and Type III out, wherein

Pi→j = kout (i)

|B| . (14)

Deviation from the predictions of this model indicate
that the network measure of interest cannot be predicted
by the marginal degree distributions alone. Ecologically
speaking, deviation from this null model means that the way
interactions are established/received is sufficient to explain
the observed structure. These models can be expressed in a
sort of hierarchy. Type I introduces the least hypotheses, and
should be applied first. If there is no significant deviation,
then Type III models can be applied, then Type II. This
approach has the important benefit of, in addition to
determining which properties show a difference from the
random expectation, giving insights about which aspect of
the structure are responsible for this difference.

(b) Topological and generative models

It is important to note that these models, based on
permutations, are purely topological. There is no difference,
when deciding if an interaction should be assigned between
two species, between e.g. a plant–pollinator network, or a
host–parasite network. One may want to test deviation from
a null distribution that would be informed by ecological
processes. To inject some processes into the null models
used, several ‘generative’ models have been proposed.
In contrast to topological models, generative models use
core assumptions about ecological mechanisms to generate
networks that mimic aspects of a template network. Arguably
the most influential (despite it being limited to trophic
interactions) is the ‘niche model’ (Williams & Martinez,
2000), that generates networks of trophic groups based
on the hypothesis that feeding interactions are determined
by an arbitrary niche-forming axis generally accepted or
implied to be body-size ratios (Brose et al., 2006a). Gravel
et al. (2013) showed that the parameters of this model can
be derived from empirical observations. The niche model
assumes a beta distribution of fundamental niche breadth
in the entire network (in cases where the trait space is
bound between 0 and 1); this assumption, close though it

may be to empirical data, nevertheless has no mechanistic
or theoretical support behind it. This suggests that so-called
generative models may or may not be adequately grounded in
ecological mechanisms, which implies the need for additional
developments. Similar models include the cascade model
and the nested-hierarchy model, but these tend to generate
networks that are qualitatively similar to those of the niche
model (Brose, Williams & Martinez, 2006b). More recently,
several models suggested that species traits can be used
to approximate the structure of networks (Santamaría &
Rodríguez-Gironés, 2007; Bartomeus, 2013; Olito & Fox,
2015; Crea et al., 2015; Bartomeus et al., 2016). Finally,
networks tend to be well described only by the structure of
species abundances. Both in food webs (Canard et al., 2012)
and host–parasite bipartite networks (Canard et al., 2014),
modelling the probability of an interaction as the product of
relative abundance is sufficient to generate realistic networks.
These generative models represent an invaluable tool, in that
they allow building on mechanisms (although, as we illustrate
with the niche model, not necessarily ecological ones)
instead of observed relationships to generate the random
expectations. The NHST-based analyses then proceed as
with topological models, i.e. the observed value is compared
to the distribution of values in the theoretical space.

(6) Future methods for novel questions

Surveying the methodological toolkit available to analyse
ecological networks highlights areas in which future
developments are needed. We identified, in particular, four
topics that require additional attention.

(a) Multi/hyper graphs

Most of the tools to analyse species interaction
networks are limited to node-to-node interactions, to the
exclusion of node-to-interaction or interaction-to-interaction
interactions. This limits the variety of biological situations
that can be represented. Golubski & Abrams (2011) presented
a number of situations that elude description in this way. For
example, opportunistic infection by a pathogen O requires
the pre-existence of an interaction between a pathogen P

and an host H . This situation is better captured as (i)
the existence of an interaction between H and P (noted
LHP ) and (ii) the existence of an interaction between O and
this interaction, noted O → LHP . Another hard-to-represent
scenario is niche pre-emption: if a host H can be infected by
either pathogen P1 or P2, but not both at the same time, then
the interactions LHP1 and LHP2 interact antagonistically. This
is a different situation from simple competition between P1
and P2. Although these are extremely important drivers of,
for example, species distributions (Araújo & Rozenfeld, 2014;
Blois et al., 2014), the current methodological framework of
ecological network analysis is not well prepared to represent
these data.
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(b) External information

Building on the basis suggested by Poisot, Stouffer & Gravel
(2015), Bartomeus et al. (2016) proposed that the mechanisms
determining ecological interactions can be identified within
a cohesive statistical framework, regardless of the type of
ecological interaction. At its core, their framework assumes
that interactions are the consequence of matching rules,
i.e. relationships between trait values and distributions.
For example, a pollinator can get access to nectar if its
proboscis is of a length compatible with the depth of the
flower. Rather than relying on natural history, these ‘linkage
rules’ (Bartomeus, 2013) can be uncovered statistically, by
modelling an interaction Lij as a function f (xi , yj ) of the traits
involved, wherein xi and yj are sets of traits for species i

and j, respectively. Procedures akin to variable selection will
identify the traits involved in the interaction, and model
selection can identify the shape of the relationship between
trait values and interactions. There are two reasons for which
this work is an important milestone in modern analysis of
ecological networks. First, it places interactions within the
context of community ecology, by showing how they build
upon, and influence, trait distributions. In particular, it draws
attention to how structure of networks results both from the
linkage rules and from the distribution of traits in the locality
where the network is measured (Gravel, Albouy & Thuiller,
2016a). Second, it does away with the necessity of topological
models to generate random networks: identifying matching
rules is the only step needed to generate random networks
based on functional, biological hypotheses, thereby solving
some of the concerns we identified with generative null
models. We argue that this approach should be expanded
to accommodate, e.g. phylogenetic relationships among
species (Bastazini et al., 2017). The ideal framework to study
networks, and the one we should strive for, avoids considering
interactions in isolation from other aspects of community
structure – instead, it is explicit about the fact that none of
these aspects are independent. Although this will come with
additional mathematical and statistical complexity, this cost
will be more than offset by the quality and the refinement of
the predictions we will be able to make.

Although documenting species, traits, and interactions
seems like a daunting effort, there are novel approaches
to accelerate the generation of data in some systems.
For example, Bahlai & Landis (2016) showed that passive
measurement based on citizen science (using Google Images)
allows users to accurately document phenological matches
and species interactions between flowers and bumblebees.
Similarly, Evans et al. (2016) showed that sequencing of
diet gives access to phylogenetic and interaction history
within a single experiment. Addressing novel questions will
require a diversification of the methodological toolkit of
network ecologists, as well as an improved dialogue between
empiricists and theoreticians.

(c) Networks of networks

An additional frontier for methodological development has
to do with the fact that networks can be nested. A network
of species–species interactions is the addition of interactions
at the population level (Poisot et al., 2015), themselves being
aggregates of interactions at the individual level (Dupont,
Trøjelsgaard & Olesen, 2011; Melián et al., 2014; Dupont
et al., 2014). This is also true when moving from single-site to
multi-site network analysis (Poisot et al., 2012; Canard et al.,
2014; Carstensen et al., 2014; Trøjelsgaard et al., 2015). Local
interaction networks exist in the meta-community landscape
(Gravel et al., 2011; Trøjelsgaard & Olesen, 2016), and their
structure both locally and globally, is constrained by, but
is also a constraint on, co-occurrence (Araújo et al., 2011;
Cazelles et al., 2015).

Analysing networks in a meta-community context might
require a new representation. Most of this challenge comes
from two sources. First, species are shared across locations;
this means that two nodes in two networks may actually
represent the same species. Second, networks are connected
by species movement. Both the dynamics and the structure
of networks are impacted by the fact that species move across
the landscape at different rates and in different ways. The
implication is that every species in the landscape potentially
experiences its own version of the metacommunity (Olesen
et al., 2010). These issues have seldom been addressed, but
would allow a more potent examination of the spatial
structure and dynamics of ecological networks (Trøjelsgaard
& Olesen, 2016). Gravel et al. (2016b) recently introduced
spatially explicit Jacobian matrices, allowing the formal
consideration of coupled dynamics of several networks in
a meta-community.

IV. ‘WHAT ARE SPECIES INTERACTION
NETWORKS?’, REVISITED?

The above analyses benefit from access to (context-enhanced)
data on ecological interactions. An important point to raise
is that the format expected for the analysis (i.e. when data
are actively being processed) is different from the format
suitable for storage, archival, mining, and linking. From
an information management perspective, this places the
question What are ecological networks? in a new light.

Most of the measures mentioned above, and therefore
most software, expect networks to be represented as matrices;
every row/column of the matrix is an object, and the value
at row i and column j is a measure of the interaction
between i and j. It can be a Boolean value, a measure
of interaction strength, or a probability of interaction. This
approach is used by databases such as IWDB, Web-of-Life.es,
and World of Webs (Thompson et al., 2012). Although this
approach has the benefit of being immediately useful, it
lacks the easy addition of metadata. In the context of species
interaction networks, metadata is required at several levels:
nodes (species, individuals), interactions, but also the overall
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network itself (date of collection, site environmental data,
and so on). Most research has so far been constrained to
the adjacency matrix representation of networks. However,
ontologically richer representations (graphs with built-in
metadata) may offer themselves to a larger and different
tool set: multi-graphs, and hyper-graphs, capture a wider
picture of ecosystems where all types of interactions are
considered simultaneously. Food webs, or other networks,
stored as binary or weighted matrices may not be the most
relevant representation for these questions.

There are two initiatives that remedy this shortcoming
by providing meta-data-rich information on ecological
interactions. Globi (Poelen, Simons & Mungall, 2014) is
a database of interactions, extracted from the literature,
and available through GBIF . It relies on an ontology of
interaction types, and on unique taxonomic identifiers for
species. Mangal.io (Poisot et al., 2016a) is a database of
networks, that can be fed and queried openly through several
packages; it relies on a custom data format, and can be linked
to other databases through the use of taxonomic identifiers.

Networks formatted as raw matrices may well be
immediately usable, but supplementing them with external
information is hard. On the other hand, granular databases
with rich metadata can always be converted to raw matrices,
while retaining additional information. It is important that we
maintain a distinction between the formats used for storage
(in which case, relational databases are the clear winner) and
the formats used for analysis (that can be generated from
queries of databases). In order to facilitate synthesis, and draw
on existing data sources, it seems important that the practice
of depositing interaction matrices be retired, with the profit of
contributing to the growth of context-rich databases. There
are a handful of software packages available for ecological
network analysis (Csardi & Nepusz, 2006; Dormann, Gruber
& Fruend, 2008; Hagberg, Schult & Swart, 2008; Hudson
et al., 2013; Flores et al., 2016; Poisot et al., 2016b). They differ
in their language of implementation, license, and methods
availability.

Considerations about the analysis of networks go hand
in hand with the far more difficult question of data sources
and data quality. Jordano (2016) showed that obtaining
estimates of the completeness of sampling is both difficult,
and different between weighted and unweighted networks.
Describing the data at the level of the interaction in
more detail may therefore give better estimates of (i) the
robustness of the overall network, and (ii) the relevant
aspects of life history to add in models. These can then
be added to predictive models, in the form of functional
traits (Bartomeus, 2013; Bartomeus et al., 2016), to boost
our ability to infer the existence of interactions (or their
strength). Relevant interaction-level data (discussed in Poisot
et al., 2016a) include the identity of species involved, their
abundances, local environmental conditions, and functional
traits of the individuals or populations observed interacting,
when available. Shifting the focus of sampling away from
networks, and onto interactions (because what are networks,
but a collection of interactions?) would give more information

to work with. Because the amount, resolution, and type of
information that it is necessary and feasible to sample will
vary for each system, empirical network scientists should lead
the effort involved with developing data standards. Taking a
step back, data quality should be framed within the context
of a specific analysis; we feel that there is a need for a review
that would attempt to determine the minimal amount of
information needed as a function of the type of analyses that
will be applied.

V. CONCLUSIONS

(1) In this contribution, we have attempted a summary of
the measures from graph theory that are the most frequently
used in, or the most relevant to, the analysis of species
interaction networks.

(2) Even though species interaction networks are ubiq-
uitous in community ecology, biogeography, macroecology,
and so on, there is no clear consensus on how to analyse
them. We identified a number of areas that would ben-
efit from methodological development. We highlight each
of these below, and identify whether they should stimulate
future development of novel methods to complete the frame-
work, or stimulate further investigation and assessment of
existing methods to clarify when they should be applied.

(a) There is a pressing need to accommodate
hypergraphs and multigraphs within the network
analysis framework, to allow work on a larger and
more realistic variety of ecological situations. Pilosof et al.
(2017) identified these systems as having a high relevance
when predicting community change, and the emergence
of zoonotic diseases, and this is a clear example of an
area in which ecology and applied mathematics can have
fruitful interaction.

(b) The information we use in the building of
network needs to be expanded. Far from being a
collection of species and their interactions, networks
are structured by environmental forces, species trait
distribution, species evolutionary history, and random
chance. Replicated data sets with extensive metadata
and additional information would most likely boost our
power to describe, explain, and predict network structure
(Poisot et al., 2016d ). The next generation of network
measures should account for additional information
carried by both species and interactions.

(c) Of course, the addition of data to ecological
interactions requires to expand the scope of what is
currently being sampled, and to normalize it to some
extent. More broadly, we expect that the development
of novel methods, and the collection of novel data
and their standardization, should go hand in hand.
The emergence of interactions and networks databases,
based around documented formats, is a step in the right
direction, as they provide an idea of the scope of data to
collect.
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(d) We need to establish stronger standards for the
manipulation of network data. Networks are difficult
to manipulate, and the lack of a robust software
suite to analyse them is a very worrying trend – our
knowledge of ecological networks is only as good as
our implementation of the analyses, and academic
code can always be made more robust, especially in
fields where the widespread adoption of computational
approaches is still ongoing. We expect that, since there
are numerous initiatives to increase good practices in
software engineering among academics, this problem
will be solved by improved community standards in the
coming years.

(e) The NHST approach to network structure needs
additional study, especially when it comes to determining
best practice. Recent developments in graph theory,
and notably edge-sampling based cross-validation (Li,
Levina & Zhu, 2016), can help assess the performance of
generative null models. There is a shortage of null models
that are based on topology but still account for known
biology of the networks (such as forbidden interactions),
highlighting the need for future developments.

(f) There is a need to compare the alternative
measures of a single property. We tried as far as
possible to frame these measures in the context of their
ecological meaning. But this can only be done properly
by strengthening the ties between network analysis and
field- or laboratory-based community ecology. Statistical
analysis of measures on existing data sets will only go
so far, and we call for the next generation of studies
aiming to understand the properties of network structure
to be built around collaboration between empirical
researchers and measures developers.
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