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ABSTRACT
The structure of ecological interactions is commonly understood through analyses of
interaction networks. However, these analyses may be sensitive to sampling biases
with respect to both the interactors (the nodes of the network) and interactions
(the links between nodes), because the detectability of species and their interactions is
highly heterogeneous. These ecological and statistical issues directly affect ecologists’
abilities to accurately construct ecological networks. However, statistical biases
introduced by sampling are difficult to quantify in the absence of full knowledge of
the underlying ecological network’s structure. To explore properties of large-scale
ecological networks, we developed the software EcoNetGen, which constructs and
samples networks with predetermined topologies. These networks may represent a
wide variety of communities that vary in size and types of ecological interactions.
We sampled these networks with different mathematical sampling designs that
correspond to methods used in field observations. The observed networks generated
by each sampling process were then analyzed with respect to the number of
components, size of components and other network metrics. We show that the
sampling effort needed to estimate underlying network properties depends strongly
both on the sampling design and on the underlying network topology. In particular,
networks with random or scale-free modules require more complete sampling to
reveal their structure, compared to networks whose modules are nested or bipartite.
Overall, modules with nested structure were the easiest to detect, regardless of the
sampling design used. Sampling a network starting with any species that had a high

How to cite this article de Aguiar MAM, Newman EA, Pires MM, Yeakel JD, Boettiger C, Burkle LA, Gravel D, Guimarães PR Jr,
O’Donnell JL, Poisot T, Fortin M-J, Hembry DH. 2019. Revealing biases in the sampling of ecological interaction networks.
PeerJ 7:e7566 DOI 10.7717/peerj.7566

Submitted 23 April 2019
Accepted 29 July 2019
Published 2 September 2019

Corresponding authors
Marcus A.M. de Aguiar,
aguiar@ifi.unicamp.br
Erica A. Newman,
newmane@email.arizona.edu

Academic editor
Leonardo Gollo

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj.7566

Copyright
2019 de Aguiar et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.7566
mailto:aguiar@�ifi.�unicamp.�br
mailto:newmane@�email.�arizona.�edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.7566
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


degree (e.g., abundant generalist species) was consistently found to be the most
accurate strategy to estimate network structure. Because high-degree species tend to
be generalists, abundant in natural communities relative to specialists, and connected
to each other, sampling by degree may therefore be common but unintentional
in empirical sampling of networks. Conversely, sampling according to module
(representing different interaction types or taxa) results in a rather complete view of
certain modules, but fails to provide a complete picture of the underlying network.
To reduce biases introduced by sampling methods, we recommend that these
findings be incorporated into field design considerations for projects aiming to
characterize large species interaction networks.

Subjects Biodiversity, Ecology, Ecosystem Science, Mathematical Biology, Data Science
Keywords Ecological networks, Modularity, Network metrics, Species interaction networks,
Network topology, Nestedness, Food webs, Field sampling design

INTRODUCTION
Network theory provides an efficient way to represent and characterize the structure of
ecological systems by organizing the complex relationships between species as graphs,
where nodes represent the species, and links represent their interactions (Pascual &
Dunne, 2006). Modularity (or compartmentalization) is a tendency of networks to form
clusters of highly connected nodes, with weaker connections among clusters, which can be
revealed using analytical methods (Marquitti et al., 2014). These clusters are referred to
as modules or compartments. Modularity is a common property of ecological interaction
networks (Newman, 2006; Olesen et al., 2007), but is a broad concept that can apply to
clustering among nodes in any type of network. In an ecological network, modularity may
arise within communities of co-occurring species or describe clustering in space, may
or may not correspond to taxonomic or functional groups of species, and may also
arise in intraspecific interactions (e.g., family groups). In this paper, we primarily focus
on modular networks that represent the clustering of species and the interactions
between them.

Empirical networks often focus on a limited subset of interacting species (in practice
corresponding to one or a few modules), as field observations used to construct species
interaction networks can be effort-intensive. Furthermore, a field ecologist may
attempt to exhaustively sample the species interacting in a delimited area, while ignoring
interactions and species that occur outside that area. These approaches leave many species
and interactions unsampled, both in the community and in adjacent communities, and
may therefore leave a large number of species or entire modules that interact with sampled
species undetected.

Empirical networks may have limitations other than unsampled links or nodes. For
example, the total size of the empirical network may influence howmuch of the underlying
topology is sampled, and therefore, what we conclude about the overall topology of an
interaction network. Because empirical interaction networks are often constructed with a
focus on a given type of interaction and by sampling interactions of a particular taxonomic
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group within a locality (Hall & Raffaelli, 1993; Bascompte & Jordano, 2007), the
largest empirical ecological interaction networks typically include nomore than a few hundred
species; often many fewer. Nevertheless, these empirical networks represent subnetworks
within a more complete ecological network. The underlying network will also necessarily
include many more species interacting in multiple qualitatively different ways (Fontaine et al.,
2011; Pilosof et al., 2017). For example, a plant–pollinator network focusing on insects is one or
a few modules of a larger network that includes pollinators from other taxonomic groups,
as well as the consumers of these species and their parasites, and so on (Table 1).

Establishing the relationships between the topology of a sampled network and the true,
underlying network is a fundamental challenge in community ecology as a whole:
establishing the boundaries of the system of interest (Morin, 2009). Previous studies have
examined the effects of sampling on the inferred structure of networks (Jordano, 1987,
2016; Stang et al., 2009; Gibson et al., 2011; Cirtwill et al., 2019). Network structure, in
particular the relative abundance of species, may be affected by species specialization
(Blüthgen, Menzel & Blüthgen, 2006). Detectability of ecological interactions is also known
to influence what network topology is inferred from empirical sampling (Bartomeus,
2013; Graham & Weinstein, 2018). Although there are many known issues with empirical
sampling of networks, an idealized mathematical approach can lend insights into
what underlying biases are introduced to inferred network structure through sampling.

In many areas of complex systems, sampling is critically important, because the
properties of massive graphs with millions or even billions of nodes simply cannot
be computed (Leskovec & Faloutsos, 2006; Gerhard et al., 2011; Hu & Lau, 2013;

Table 1 Variations in structure among ecological interaction networks.Network topology can vary greatly from one part of the network to another,
and influence the conclusions drawn about the underlying network. For example, interactions among certain groups of species form subnetworks
characterized by high degrees of modularity and reciprocal specialization, as is the case with some ant-myrmecophyte networks (Guimarães et al., 2007),
clownfish-anemone networks (Fautin & Allen, 1997; Ollerton et al., 2007), and other networks where interactions are symbiotic (Hembry et al., 2018).
Conversely, mutualisms such as those between plants and their pollinators or seed dispersers (Bascompte et al., 2003), or the interactions between
generalized predators or herbivores with the resources they consume (Pires &Guimarães, 2013) are highly nested, where the interactions of specialists are a
nested subset within those of generalists. Yet, as we look at broader scales that include multiple habitats, taxonomic groups, and/or interaction types, a
modular organization tends to emerge (Olesen et al., 2007; Donatti et al., 2011), with each module having unique structural properties (Lewinsohn et al.,
2006; Fontaine et al., 2011). More complete ecological networks may emerge from the aggregation of multiple types of interactions, as well as the various
and sometime unique structures such interactions form, and can be represented as large, modular networks. However, it is unknown whether and to what
extent different sampling strategies might bias our understanding of the underlying network structure (Jordano, 2016; Fründ, McCann &Williams, 2016;
Vizentin-Bugoni et al., 2016). Below, simulated modules represent certain types of ecological interactions, each of which are known to have different
associated structural characteristics. These structures may provide null models for empiricists, or guide initial guesses at true, underlying network structure.
Individual module structure is considered, though real networks may be composed of many modules of varying types.

Module structure Ecological interaction type commonly represented

Random Null model or random interactions

Scale-free Null model for preferential attachment

Nested Consumer–resource interactions (e.g., predator–prey interactions)

Bipartite nested Consumer–resource interactions with nonoverlapping sets (e.g., plant–pollinator interactions)

Bipartite random Null model for plant–pollinator interactions

Tripartite nested Plant–pollinator interactions with added nested trophic level, such as birds–plant–bats where bird–plants and bat–plants
are nested

Tripartite random Plant–pollinator interactions with added random trophic level, such as birds–plant–bats where bird–plants are nested and
bat–plants are random
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Levina & Priesemann, 2017). Several methods have been developed recently to ensure that
the properties of the sampled networks are similar to those of the original one. It has
been found, in particular, that scale-free networks, when randomly sampled, do not
produce a scale-free sampled network (Stumpf & Wiuf, 2005). It has also been found that
sampling by random walks among nodes performs well in most cases, and that sampling
by edges does not perform well in reproducing the structure of the original network
(Leskovec & Faloutsos, 2006). Sampling of highly modular networks, however, has not yet
been considered.

Indeed, the study of empirical ecological networks relies on the reasonable assumption
that the ecological and evolutionary dynamics of each module (which may be considered
a “compartment,” or subnetwork) can usually be investigated independently
(Lewinsohn et al., 2006). Yet there are situations in which neglecting the effects of other
interactions and species outside the delineated boundaries may lead to incomplete or
incorrect conclusions (Ings et al., 2009; Fontaine et al., 2011; Mello et al., 2011a, 2011b;
Rivera-Hutinel et al., 2012; Fründ, McCann & Williams, 2016). The increased interest
in larger ecological networks encompassing several groups and types of networks, such as
multilayered networks (Pilosof et al., 2017), and development of tools for their study
makes this problem especially timely for ecology.

The question is then: how much of the underlying, complete ecological network can be
observed by sampling a subset of its species (nodes) and their associated interactions
(links)? The effectiveness of field sampling in capturing the underlying complete network
may depend on (1) the underlying topology of the complete network, (2) the sampling
technique itself (Hegland et al., 2010; Gibson et al., 2011), and (3) the potential interplay
between the network topology and the sampling strategy.

We investigated the above questions with the use of a new software, EcoNetGen,
developed initially for this project in Python using Fortran, and now available in the
R programing language (De Aguiar et al., 2019) and on CRAN. EcoNetGen contains the
script NetGen (netgen in R), which generates interaction networks with predetermined
properties including network size, structure of the modules within the network (or
structure of the overall network, if it is considered to be a single module), as well as the
frequency of modules with particular structures. EcoNetGen also contains the script
NetSampler (netsampler in R), which samples sets of nodes from the full network
according to a chosen technique, and then compares the observed network against the full,
complete network. With the use of simulated networks, we have full knowledge of the size
and structure of the underlying, complete network, and we can directly compare it to the
size and structure of the sampled object.

With EcoNetGen, we examined how the interplay between network structure and
sampling design alters our inference on the among-module connectedness in networks,
and were able to draw conclusions about the sampling design that captures the most
accurate picture of the complete network for a given topology. This allowed us to
evaluate how different sampling strategies often used in the field might alter observational
accuracy, identify whether specific sampling designs produce more reliable estimates
of the underlying network structure, and determine to what extent such designs
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can be confounded or enhanced by alternative arrangements of the underlying species
interactions.

To better understand the factors that may affect the match between the topology of
the sampled and underlying networks, we focused on simulated networks in which
we can control the initial structure and properties such as size and connectance. We also
focused on simplified modules that depict well-defined structures instead of trying to
encompass all the variability that can be found in nature. The investigations presented
here are theoretical investigations of a range of possible network topologies, rather than a
comparison to field-sampled data, as any empirical network available for analyses is
already a sampled version and contains the effects of sampling biases. By building upon
simplified structures we have greater control over which variables may be affecting
network properties. We expect that the range of network topologies illustrated here can
adequately describe many empirically observed patterns and give insight into the sampling
of real networks.

Our findings are fourfold. First, both the underlying pattern of species interactions and
the strategy used to sample them had a large impact on the observed network structure.
Sampling species according to the number of their interactions (starting with any
node of high degree and constructing the sampled network outward from that node)
consistently resulted in more accurate estimates of the underlying network structure.
Second, through the use of simulated networks, we found that nested sets of interactions
are easier to detect regardless of sampling strategy (consistent with Nielsen & Bascompte,
2007). Third, we found that the size of the observed network (measured as the fraction
of the sampled network contained in its largest connected component, or “relative size of
the largest connected component”) did not depend significantly on the sampling method,
but does depend strongly on the underlying network topology. Fourth and finally,
sampling according to module membership can produce good estimates of the structure
within individual modules, but increases the risk of missing entire modules of species
interactions altogether. Because all sampling schemes have some limitations, we
recommend that empiricists consider an iterative sampling approach, where the sampling
strategy can be adjusted as network properties are revealed.

MATERIALS AND METHODS
Generating networks
Networks with a specified number of modules (one or more) and a variety of module
topologies can be constructed with the software script NetGen (netgen in R) in EcoNetGen
(details and examples in Appendix S1; scripts can be found in Appendices S5 and S6).
Networks with a single module are equivalent to a nonmodular network with a single
topology, and networks with multiple modules can be constructed with each module
having a specified topology. We assume here that the complete networks we generate can
represent an ecological system encompassing multiple interacting taxonomic groups, and
different habitats and guilds here represented as network modules (Table 1). Modularity
may also be observed in interaction networks encompassing different types of interactions,
but the results from EcoNetGen (which does not contain weighted links or interaction
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types) must be interpreted with care for these systems. In the modeled ecological
interaction network, inter-module interactions are those that indirectly connect a module
or guild with another (e.g., an interaction between bees and a plant that is mostly
pollinated by hummingbirds), or interactions of a species that inhabits two habitat types
over its lifetime (e.g., amphibians, who live part of their life cycle in an aquatic subnetwork
and the other part in a terrestrial one), or are species interactions involving species that
connect different interaction modules (e.g., butterflies, which can shift over ontogeny from
herbivores on certain plant species to pollinators of different plant species).

EcoNetGen allows the construction of modular networks where the total network size
(or total number of nodes, N), the average module size (Mav), the average degree of the
nodes (k), and topology of modules can be controlled. The simulated network can
have either one or multiple modules, the sizes of which (Mi) are drawn from a negative
exponential distribution with average value Mav. Modules can have different topologies:
random, scale-free, nested, bipartite nested, bipartite random, tripartite nested, and
tripartite random (Appendix S1: Fig. A1). Networks may be uniform, such that all modules
have similar structures (e.g., all scale-free) or may contain modules of various topologies
(e.g., a combination of random and nested). When the generated network is specified
to contain modules of multiple types (i.e., “mixed modules”), each module type is
randomly chosen with given probabilities. A generated network can be specified to contain
modules of certain types if the probability of the other module types is set to zero.
Once the modules have been created, the links between nodes within each module can be
changed, or rewired, with specified probabilities (plocal) to randomize the initial structures.
The nodes of the full network can then further be rewired (with probability prew) to
create connections among the modules.

For this study, we generated sets of modular networks with five different module
topologies: random, scale-free, nested, bipartite nested, and mixed. Although all network
generation parameters can be specified by the user, we chose to fix the total network
size at N = 500, with average module size of 25, and average node degree of k = 10 in order
to reduce the number of parameters in our analyses. Though the average degree is fixed,
the degree distribution can vary significantly depending on module type. Once the
modules were constructed according to a given algorithm, nodes were randomly rewired to
other nodes within the module with probability plocal = 0.1. This value was chosen to
preserve the identity of the modules, but remove their “exact” algorithmic form. Nodes
were further rewired to any node of the network with probability prew = 0.1, to create
connections among modules.

Sampling simulated networks
The motivation for examining different sampling designs applied to a full network is to
explore how the most common practices used by a researcher with limited time or
resources will affect the conclusions they draw about the underlying network structure.
The sampling procedure, carried out in the script NetSampler (netsampler in R), consists of
picking m nodes that anchor the construction of the observed network, and then adding a
number of first neighbor nodes (nfn, for “number of first neighbors”) to each of these
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“anchor” (or “anchoring”) nodes (Appendix S2). Such a sampling design emulates a
researcher studying a particular set ofm species, and subsequently identifying those species
that interact with the original set, as is often done when sampling animal–plant
interactions (see Jordano, 2016). The anchoring nodes and their neighbors can be chosen
in different ways, as described below. We emphasize that only the observed interactions
between nodes are included in the observed (or sampled) network. Therefore, two
anchoring nodes that are connected in the original network will be connected in the
sampled network only if one of the nodes is selected as a first neighbor of the other in the
sampling process. In other words, an existing link between anchoring nodes is not
automatically passed to the observed network. In sampling the full network, if an
anchoring node is selected more than once, it is only considered once in the network.

Sampling anchoring nodes
Once a complete network is constructed, the anchoring nodes that will be the first points of
sampling can be chosen according to different criteria. Anchoring nodes can be chosen
at random, according to the node’s degree (the number of interactions), according to
abundances that are attributed to the nodes, or by attributing weights to each module such
that species in one module (representing a particular interaction type or a taxonomic
group) can be more or less likely to be included in the sampled network over species
in other modules. Once the anchoring nodes have been chosen, the sampled network is
constructed outward from them in a procedure that adds some of the nearest first
neighbors of those nodes (described in Sampling interactions: choosing the neighbors of the
anchoring nodes).

Sampling of anchoring nodes is implemented through NetSampler (netsampler in R).
An example of sampling with NetSampler (netsampler in R) is given in Appendix S2, and
the mathematical forms of these sampling distributions are available in Appendix S3.

1. Random: m attempts to select nodes at random from the network are performed.
The actual number of distinct anchoring nodes might turn out to be smaller than m,
because the same node can be selected more than once. This sampling design represents
a benchmark with which other sampling methods can be compared.

2. Degree of the node, k: the probability that a node is selected is proportional to its degree.
The higher the degree of the node, the higher the chances are that it will be included in
the observed network. Again, m attempts are made, but fewer than m nodes might
actually be included. The reasoning for such a sampling process is that a field biologist
could choose to study a generalist species, whose interactions might be more likely to
be observed because degree is sometimes correlated with abundance (Vázquez et al.,
2009). Although in this sampling design we make no particular assumption about
abundances, this relationship could be thought of as the underlying reason in practice
why interactions of species with higher degree may be more easily detected.

3. Abundances: an abundance value is attributed to each species (node) following three
possible distributions: exponential, Fisher log-series, and lognormal (specified inNetGen
(netgen in R), see equations C1, C6, and C8 in Appendix S3). In field sampling, any
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sampling by transect, by plot, or by timed observations will be equivalent to sampling
according to a species-abundance distribution. Species-abundance distributions often
have the form of a log-normal or Fisher log-series distribution (McGill et al., 2007;White,
Thibault & Xiao, 2012; Harte & Newman, 2014; Baldridge et al., 2016; Newman et al.,
2018). Once the abundances have been attributed, m attempts to select nodes are made,
and the probability that a node is selected is proportional to its abundance.

We note that abundances are assigned in the generation of the networks (as a specific
abundance distribution), if and only if the networks are to be sampled by their
abundances. In this sense, we consider the abundance distributions to be part of the
sampling routine. Abundances are attributed to each module independently and are not
correlated to the degree of nodes or any other network properties (if this is desired, a user
can upload their own matrix with other specified properties to use with NetSampler
(netsampler in R)). This simulates a sampling process where the likelihood of sampling
depends on abundances, and therefore favors the most abundant species of each module
to be selected as anchoring nodes. This scheme differs from random sampling, where
nodes have the same chance of being selected irrespective of their module membership.
Here each module is likely to have an anchoring node represented by its most abundant
species. The process thus promotes uniform sampling across modules, and random
sampling within modules.

Restated in a slightly different way, the probability of selecting an anchor node
is not deterministic, that is, the most abundant nodes are not necessarily selected first.
The sampling of a node is proportional to its abundance, so that the most abundant nodes
are more likely to be selected in any given abundance distribution.

4. Module: sampling probabilities are assigned to the network modules, and within each
module the probabilities associated with the nodes are uniform. In this way, species
in some modules have a higher probability of being sampled than those in other
modules, while the sampling probability is uniform within a given module. This
incorporates the notion that some groups of species are easier to observe than others or
that some researchers focus on particular types of interactions or taxonomic groups (see
equation C9 in Appendix S3).

Sampling interactions: choosing the neighbors of the anchoring
nodes
Once the anchoring nodes have been selected, a subset of their interactions is sampled
from the complete network to construct the observed network. Interactions are sampled in
two ways: by specifying a maximum nfn (nfn is an integer and >1), or by specifying a
fraction of the total number of neighbors per node (nfn < 1). Similar to the parameter m
(the number of anchoring nodes), nfn specifies the number of attempts to include
neighbors: if a neighbor is selected twice, one attempt is lost. This is analogous to
performing field observations for a limited time and observing several interactions between
the same pair of species (Jordano, 2016). If nfn = 4, for example, a node with two links
will very likely have its two neighbors included, whereas a node with eight links will have at
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most four of its neighbors included (with a range of one to four neighbors actually
included). If nfn = 0.5, on the other hand, the number of attempts per node is equal to half
the number of its neighbors. Because nfn is defined in this way, we define adding all
neighbors as nfn = 1, and distinguish it in NetGen (netgen in R) code from adding a single
neighbor (which is specified by nfn = 1.1). Once the method for sampling interactions has
been chosen, the actual neighboring nodes can then either be selected: (1) with uniform
probability, or (2) with varying probabilities following an exponential distribution. In the
latter case, these probabilities can be thought of as weights that represent interaction
frequency, abundance, or a convolution of the two (Vázquez, Morris & Jordano, 2005).

For each network, we sampled m anchoring nodes and randomly added nfn first
neighbors for m = 10, 20, … , 100 and nfn = 5 or 10. This process simulates the sampling
design used to build interaction networks from field data, where only a subset of
species is repeatedly surveyed for their interactions. To demonstrate these methods,
we performed 1,000 replicates of sampling according to each scheme described above
on each generated network.

Network metrics
The number of components of the sampled network, together with the size distribution
of these components, measure how well the between-module connectedness has been
captured by the sampling procedure. Ideally a single component should emerge, matching the
complete network. Therefore, for each sampling design, we calculated: (a) the size of the
sampled network, i.e., the total number of sampled nodes; (b) the number of components of
the sampled network and; (c) the size of the largest component divided by the size of the
sampled network, i.e., the relative size of the largest component (RSLC). This last quantity
measures the fraction of sampled network contained in its largest connected component.

Because we were interested in the overall topology of the network, we focused on
metrics describing the size and number of components instead of assessing the internal
structure of each component. Because the sizes of most components were typically
small, measures such as average degree, clustering, average path length, or degree
distribution would provide much information about the observed structures. However,
since degree distribution is such a basic descriptor of networks, we explored how the
degree of sampled nodes (in the observed network) correlate with their value in the
complete network for different network topologies and sampling strategies.

RESULTS
We investigated how the incomplete sampling of large networks formed by several
modular structures affected conclusions drawn about the underlying network structure,
depending on the structure of the network, sampling intensity, sampling procedure, and
the interaction between sampling procedure and network structure.

We interacted three sampling methods (random, degree, and module) with nested
bipartite modules, shown in Fig. 1. Bipartite networks were generated with NetGen (netgen
in R) and the resulting sampled networks created by NetSampler (netsampler in R). From
these simulations, we found that sampling by module can leave entire modules hidden
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from the observer. Analogous results for a network with mixed modules are shown in
Appendix S4.

Clustering of sampled nodes is apparent and visually different between sampling
methods, which can be analyzed according to network metrics described in the ‘Methods’

Figure 1 Adjacency matrices and network structure for a network with bipartite nested modules.
Sampling occurred on m = 50 anchoring nodes, adding up to 10 nearest first neighbors. The complete
network has 16 modules with average degree of 7.5 and average module size of 31.25. Anchoring nodes
were chosen randomly in (A) and (B); according to degree in (C) and (D); or by module preference in (E)
and (F). Nodes and links in green represent the sampled species and interactions in each case. The
number of connected components in each case is 12, 6, and 13, respectively.

Full-size DOI: 10.7717/peerj.7566/fig-1
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section. RSLC varies with underlying network topology and sampling method (Figs. 2
and 3, with RSLC as a function of m for five sampling methods for bipartite nested
modular networks and mixed module networks, respectively). Interactions between
underlying network structure and sampling design were quantified by number of
components, RSLC, and size of the sampled network (Fig. 4). The modular structure of the
complete network led to sampled networks consisting of several disconnected components
corresponding to nodes from a single module or from a small group of modules. In Fig. 4,
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Figure 2 Relative size of the largest component (RSLC) analysis for a bipartite, nested network. RSLC
is shown for a network with bipartite nested modules as a function ofm (the number of anchoring nodes,
which is the number of attempts to select nodes at random from the network) for nfn = 10 (where nfn is
maximum number of first neighbors added to the anchoring nodes), with line color indicating sampling
design. Full-size DOI: 10.7717/peerj.7566/fig-2
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Figure 3 Relative size of the largest component (RSLC) analysis for a mixed modular network. The
relative size of the largest component (RSLC) is shown for a network with mixed modules as a function of
m (the number of anchoring nodes, which is the number of attempts to select nodes at random from the
network) for nfn = 10 (where nfn is maximum number of first neighbors added to the anchoring nodes),
with line color indicating sampling design. Full-size DOI: 10.7717/peerj.7566/fig-3
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for example (N = 500, m = 50, and nfn = 5), sampled networks typically had 12
disconnected components comprising approximately 150 sampled nodes.

We also found that the degree of sampled anchor nodes correlated with their true degree
in the complete network (Fig. 5). We demonstrate this for the bipartite network with
m = 50, nfn = 10 and three sampling methods. In all cases examined, there is a clear
correlation between the true degree (corresponding to the complete network) and sampled
degrees, represented by the straight ridge on the contour plots, at least for small
degrees. Many of the patterns network ecologists are interested in are related to the degree
of generalization or specialization of species, so even if the “true” degree cannot be
determined by sampling, this demonstrates that all sampling schemes can capture reliable
estimates of the degree of a species relative to others at low degrees of connectedness.
Sampling by degree is one way to mimic a passive sampling where species with more
interactions are more likely to be sampled. Only by sampling by degree by degree are we
able to capture a saturation of the node degree, which is imposed here by the nfn added to
the key nodes, nfn = 10 (see point 4 below).

The variance of the distribution in Fig. 5 does not change much across different
sampling methods for each type of network. More significant changes in the variance can

Figure 4 Interacting sampling schema with network topology. Boxplots depicting average and standard error for (A) number of connected com-
ponents, (B) relative size of largest components (RSLC), and (C) size of sampled network (measured by number of nodes) for generated networks with
N = 500, m = 50, and nfn = 5, sampled with multiple methods. For each method, the generated network was sampled with 1,000 replicates. With the
Tukey HSD (honestly significant differences) test, we examine differences between sampling within a group (a generated network type and its outcome
metric). Sampling methods within a group are statistically the same if they share a label. Full-size DOI: 10.7717/peerj.7566/fig-4
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be observed for different network types, as they have different degree distributions.
Bipartite nested networks have the smallest variance, which is related to their exponential
degree distribution (see Eq. (A.4)), and to the fact that in bipartite networks, nodes in
one type (one guild or class, for example) are only connected with nodes of the other type,
and not directly to one another. The modules corresponding to each part are, therefore,
smaller than in unipartite systems. When anchoring nodes are selected at random they
will likely have small degree and all their neighbors will be included if nfn ~ k. Unipartite
nested networks also show this effect, but not so strongly, since there is a single module
and the degree distribution is less peaked. The degree distribution is a bit more uniform
in unipartite networks than in bipartite networks, where each module is half the size of those
in unipartite networks.

Sampling by degree, by definition, tends to find more anchoring nodes at the center
of the modules and few in the periphery. Random sampling, on the other hand, picks

Figure 5 Degree of the sampled network vs degree of the complete network. Degree of sampled and complete networks are investigated for
bipartite (A–C), mixed (D–F), and nested (G–I) networks withm = 50 and nfn = 10. Only the sampled anchoring nodes are shown. From left to right
the sampling methods are: random, degree, and module. Contour plots were generated with 50 realizations of samplings on each network.

Full-size DOI: 10.7717/peerj.7566/fig-5
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relatively more peripheral nodes, as can be seen by comparing Figs. 1B with 1D and 2B
with 2D. These general features are also present in nested, scale-free, and random networks
(not shown). The aggregate statistics of the sampled network properties we calculated
are summarized in Fig. 4 for networks with five different module types and five sampling
methods. Of the major metrics we investigated, we observed the following trends:

1. Number of connected components: Networks with nested modules have the smallest
number of connected components and show the highest level of between-module
connectedness. The other network types did not show significant variation in the
number of connected components across the different sampling designs.

2. Relative size of the largest connected component: Networks with nested modules had
largest sampled components containing up to 60% of the entire number of observed
nodes, whereas the largest component of the other network types represents only 30% of
the observed nodes, revealing a much lower degree of connectedness between modules
than in nested networks. An exception is the mixed network sampled by degree,
whose largest component contained 56% of the nodes of the observed network.

3. Size of sampled network: Networks with nested and bipartite nested modules always
produced the smallest sampled networks (measured by RSLC), independent of the
sampling procedure (Fig. 4). This is because in nested networks the probability that
nearest neighbors of anchor nodes will overlap is large, resulting in multiple samplings
of the same neighbor and creating the small observed sampled network sizes. Networks
with scale-free modules, on the other hand, produced the largest observed networks,
followed closely by those with random modules. On average, observed networks that
were sampled from full networks with nested modules were 72% smaller than those
sampled from networks with scale-free modules. This is because species with high
degree in the scale free module will be in hubs that are also connected with species in
other modules. Hence, once such species are sampled, we are likely to sample several
other nodes from other modules. Mixed networks fell in between these two cases, as
expected. However, irrespective of network type, if m≪ N, the expected network size is
simply m�nfn if nfn≪ k or m�k if k≪ nfn, as all sampled neighbors would be included
in this case.

4. Degree of sampled nodes: All sampling methods show linear correlation between the
true and sampled degrees for anchor nodes if nfn ~ k, since most of the node’s neighbors
will be added to the sampled network. In this regime, only sampling by degree goes
beyond the linear correlation and captures the saturation at nfn, as anchor nodes will
typically have degrees larger than the average. If nfn ≪ k, saturation at nfn will occur
for all sampling methods. Saturation is not a benefit or drawback in itself, but an
indication of the relationship between real and sampled networks. All sampling methods
are limited by nfn, the nfn that can be potentially added to the sampled network. Sampling
by degree implies that the selected anchor nodes have many connections. Saturation is
an indication that for larger values of nfn, a greater sampling effort is required to recover
the underlying structure. The extra effort is rewarded by a better sampled results (a larger
sampled network with fewer components). Random sampling or sampling by module
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(as illustrated in Fig. 5), on the other hand, selects portions of the original network with
fewer connections, and therefore requires smaller values of nfn, but it also returns a poorer
representation of the original network.

DISCUSSION
Although complete ecological networks found in nature may be incredibly large, efforts to
understand the structure or dynamics of these empirical systems have focused on smaller,
tractable subcomponents of the actual networks due to limitations of time, energy,
and budget (Burkle & Alarcón, 2011). Moreover, most field-based attempts to quantify
ecological networks limit the types of interactions being measured to particular species of
interest. In our formalization, individual studies would generally tend to examine one or a
fewmodules that exist within a larger universe of interactions, defined here as the “complete”
or underlying network. For example, a plant–pollinator module is depicted as a tightly
interconnected bipartite network (Bascompte & Jordano, 2007), where the trophic
interactions of its constituent species are part of a trophic network that may be ignored.

The complete network, encompassing different types of interactions and taxonomic
groups, as well as the structural heterogeneity depicted among its subnetworks (here
represented by the distinct modules), is rarely addressed. Nonetheless, the ecological and
evolutionary dynamics of these modules in the community are hardly independent of
each other. Modules may emerge naturally due to the sparseness of interactions across
space, time, or even as the result of coevolutionary forces (Olesen et al., 2007; Beckett &
Williams, 2013; Andreazzi, Thompson & Guimarães, 2017). Still, the effects of interactions
in one module can propagate across the system (McCann, Rasmussen & Umbanhowar,
2005; Rooney et al., 2006). The groups of species and types of interactions one targets when
conducting fieldwork will define the type and size of the network studied. In practice,
adding additional species to a sampled network may uncover additional, previously
unrecognized modules (sometimes, but not always, corresponding to guilds or functional
groups of species; Donatti et al., 2011). Likewise, interacting species in adjacent
communities and unsampled layers (of a multilayer network) may contain or correspond
to their own modules.

Analytical techniques that simultaneously address multiple types of interactions and
ecological outcomes (i.e., multilayered networks; Pilosof et al., 2017; Genrich et al., 2016)
will require a better understanding of the bias imparted by sampling strategies, in
order to deal with the insurmountable diversity of organisms and interactions in real
communities. Thus, if we desire to understand the relationships between structure and
function, we should ultimately aim to obtain the most accurate depiction of a network’s
structure that encompasses all elements potentially affecting its function.

Here, we attempted to quantify how much of the idealized network is observable, and
what systematic biases may exist as a function of the interaction between the designs
used to sample species interactions, and the topological structure of the complete network.
To this end, we provide the software EcoNetGen, which can be used to explore many
features of biases introduced by sampling methods. We investigated only a few of these
features, related to the between-module connectedness of the observed network.
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We highlight that the scripts contained in EcoNetGen, NetGen (netgen in R), and
NetSampler (netsampler in R) may be used to form null models and simulated networks in
other studies, for further explorations of network size, structure, and sampling.

CONCLUSIONS
Our analyses using EcoNetGen point to four main results. First, sampling design has a
large impact on the properties of the observed network. Sampling according to species
degree seems to be the only method that consistently generates nearly complete networks,
as it produces the largest and more connected observed networks, with the smallest
number of components. Sampling by degree in the field context would involve identifying
a highly connected organism, such as a generalist pollinator or seed disperser, measuring
interaction links from that organism, and subsequently adding “nearest neighbor”
species, the interactions they have, and so on. It is not necessary, in this sampling schema,
to start with the most highly-connected species, as long as it is highly connected. For most
ecological systems, natural history studies can provide intuition about which species
are most likely to be the highly-connected in the network, and which species are highly
specialized. Moreover, it is relatively easy to identify the highly-connected species through
incomplete sampling schemes (Pires, Marquitti & Guimarães, 2017). Thus, a combination
of natural history information and sampling schemes focused on highly-connected
species may provide the most accurate description of ecological networks.

Further, networks comprised of bipartite nested and nested modules generally result in
poorly sampled networks that are small and have several disconnected components.
This suggests that networks with these types of structures demand greater sampling effort
than networks with random or scale-free modules, for instance. Although real networks
are in-between these different structural patterns explored here, this highlights that
special care should be taken with sampling design, since the interplay between sampling
and structure will affect how representative the sampled network will be. The positive
message is that sampling from networks with bipartite nested modules results in observed
networks with a large number of small components, meaning that each module is well
sampled. The challenge to build more representative networks is to devise ways to sample
the connections among modules, which are rarely observed by the different sampling
schemes for these types of networks.

In comparing sampling designs, it is clear that sampling by module produces by far the
smallest observed networks for all topologies (Fig. 4). Sampling by degree, in contrast,
produces the largest sampled networks (as measured by the RSLC) and is therefore most
representative of the underlying complete network. For networks with random and
scale-free modules, sampling by degree produced similar results compared to random
sampling, but for nested and bipartite nested networks, sampling by degree always
produced significantly larger observed networks than random sampling. Interestingly,
sampling by abundance (as by transects or by sweep netting in the field) does not seem to
be appropriate for nested or bipartite nested networks, because the results are only slightly
better than sampling by module. For random and scale-free networks, sampling by
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abundance produces observed networks that are only slightly smaller than those produced
by sampling by degree.

Second, nested modules are better represented in sampled networks than other module
structures. Since the renewal of the interest in ecological networks in recent decades,
nestedness has played a central role in the literature and has been reported in a wide variety
of systems described as bipartite networks (Bascompte et al., 2003; Guimarães et al.,
2006; Joppa et al., 2010). However, the relevance of nestedness has been contested
(Staniczenko, Kopp & Allesina, 2013; James, Pitchford & Plank, 2012), and mechanisms
such as abundance heterogeneity and sampling have been invoked as underlying causes
of the pervasiveness of the nested pattern (Vázquez et al., 2009). The fact that nested
modules are over-represented compared to other module types in sampled networks
suggests that a major underlying reason for the ubiquity of nestedness in empirical networks
is that sampling strategies employed in empirical studies are successful in thoroughly
sampling nested subnetworks (Nielsen & Bascompte, 2007), but may not perform as well
when sampling non-nested subnetworks. Similarly, networks with unipartite nested
modules (Cantor et al., 2017) stand out as providing observed networks with the most
closely connected of all topologies. Sampling by degree, i.e., with focus on those species
likely to establish more interactions, is therefore the recommended procedure for sampling
networks with mixed modules, but it may overestimate the relative frequency of nested
modules because non-nested modules are harder to thoroughly sample. Testing additional
sampling designs capable of identifying other structures will aid in understanding the
relative frequency of the different structural patterns in real networks.

Third, given a set number of anchoring nodes, m, and nearest neighbors to be probed,
nfn, the size of the observed network does not depend significantly on the sampling
method, but does depend strongly on the underlying network topology. As shown in Fig. 1,
the size of the network at m = 50 is smaller for nested and bipartite nested networks,
independent of the sampling criterion, whereas networks with scale-free modules produce
the largest sampled networks. This happens because the degree distribution in nested
networks is highly heterogeneous and more anchoring nodes will likely have fewer than
nfn neighbors. Network size (measured by RSLC) does not change much for any sampling
method, with the exception of sampling by module (which always produces small
observed networks). This suggests that sampling the entire network will be difficult no
matter which sampling strategy is chosen, and perhaps the best strategy is one of iterative
sampling, where the structure of a partially sampled network is analyzed and sampling
is resumed using the sampling design that best suits the structure that has been uncovered.

Fourth and finally, sampling according to module generally results in small observed
networks with a small number of observed components. This means that this method
may detect most of the inner structure of some modules, but will also miss most of the
connections between modules, and may miss modules entirely. Sampling by module does
thoroughly sample a part of the network, allowing for identification of interactions in
multiple modules. This type of sampling is arguably the most pervasive in the network
literature where a certain type of interaction, guild, or taxonomic group is exhaustively
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sampled. Our simulations show that sampling by module may give a thorough depiction of
the module but may also point to other modules, which can then be sampled according to
the most adequate sampling design.

Because properties of the network that determine the most efficient sampling strategy
(such as species degree and module topology) are not fully known prior to undertaking
a study, we recommend an iterative sampling approach, where the strategy can be
adjusted as network properties are revealed. In recent years, interest in ecological network
theory has grown exponentially (Costa et al., 2007; Borrett, Moody & Edelmann, 2014;
Delmas et al., 2019) while our understanding of empirical systems has lagged behind,
in part due to the difficult and time-intensive nature of field data collection and sample
processing. Only by integrating a formal understanding of how empirical efforts reflect or
bias estimation of the underlying network of species interactions can we confront
theoretical models with our observations of natural systems.
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