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Network analyses support the role of prey preferences in shaping 
resource use patterns within five animal populations
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Individual variation is an inherent aspect of animal populations and understanding the mechanisms shaping resource use 
patterns within populations is crucial to comprehend how individuals partition resources. Theory predicts that differences 
in prey preferences among consumers and/or differences in the likelihood of adding new resources to their diets are key 
mechanisms underlying intrapopulation variation in resource use. We developed network models based on optimal diet 
theory that simulate how individuals consume resources under varying scenarios of individual variation in prey preferences 
and in the willingness of consuming alternate resources. We then investigated how the structure of individual–resource 
networks generated under each model compared to the structure of observed networks representing five classical examples 
of individual diet variation. Our results support the notion that, for the studied populations, individual variation in prey 
preferences is the major factor explaining patterns in individual–resource networks. In contrast, variation in the willing-
ness of adding prey does not seem to play an important role in shaping patterns of resource use. Individual differences in 
prey preferences in the studied populations may be generated by complex behavioral rules related to cognitive constraints 
and experience. Our approach provides a pathway for mapping foraging models into network patterns, which may allow 
determining the possible mechanisms leading to variation in resource use within populations.

Ecological theory is often based on the simplifying assump-
tion that differences among individuals within popula-
tions can be ignored. However, individuals within animal 
populations can show substantial variation regarding many 
aspects of their ecology, life history, behavior and morpho-
logical traits (Bolnick et  al. 2003). Age, sex, morphology 
and learning are important drivers of intrapopulation varia-
tion in resource use (Grant et  al. 1976, Gustafsson 1988,  
Tinker et al. 2009, Masri et al. 2013). Intrapopulation varia-
tion in turn can affect ecological processes such as preda-
tion rates and the degree of intraspecific competition, which 
can scale up to alter ecological patterns at the community 
level (Hughes et  al. 2008, Bolnick et  al. 2011, Moleón 
et al. 2012). Individual variation in resource use is the raw 
material for evolution and may favor polymorphic popula-
tions which eventually, can contribute to diversification and  
speciation (Dieckmann and Doebeli 1999).

One way to examine the frequency and importance of 
intrapopulation variation is to investigate food niche varia-
tion among individuals. A theoretical framework used to 
explain individual variation is the optimal diet theory (ODT, 
Stephens and Krebs 1987). ODT predicts that an individual 
should maximize its energy gain given the costs and benefits 
of consuming a given food item, which are determined by 

the energy content of the food item and the handling and 
search times associated with it. If individuals follow differ-
ent rules in maximizing energy intake, they should differ in  
their rank preferences and hence differ in their prey choices 
(Tinker et al. 2009). There are several mechanisms that can 
lead individuals to differ in rank preferences and a good start-
ing point for a better understanding of individual variation 
is to use simple models to address how such differences can 
emerge between individuals (Robinson and Wilson 1998). 
Two broad classes of mechanisms can lead to variation in 
prey choice. First, individuals can differ in their preference 
for prey, given differences in maximization rates associated 
with each prey species (Price 1987, Afik and Karasov 1995). 
Second, individuals can vary in their willingness to add a 
new food resource to their diets once their preferred resource 
becomes scarce (Schindler et al. 1997, Svanbäck and Persson 
2004).

Svanbäck and Bolnick (2005) developed genetic-based 
models that explored how these two basic mechanisms can 
be used to describe individuals exploiting resources under 
different scenarios of intraspecific competition. These mod-
els of resource use assume a predator species with variation 
in resource use, in which the degree of intraspecific competi-
tion influences resource availability thus affecting resource 
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use. Individuals can share the same rank preference for prey, 
but differ in their willingness to add alternative prey to their 
diets (shared preferences model); individuals can share the 
same top-ranked prey and differ in their alternative prey 
(competitive refuge model); or individuals can have different 
top-ranked prey (distinct preferences model) (Svanbäck and 
Bolnick 2005, Pires et al. 2011a). As intraspecific competi-
tion increases individuals are expected to add prey species to 
their diets according to their rank sequence. In this sense, 
each model presents a specific feeding strategy. A fundamen-
tal question is if these different feeding strategies are at some 
level encoded in particular patterns of resource use and niche 
partition within populations.

It is possible to investigate the patterns of resource  
use within a population by measuring diet overlap among 
individuals and between individuals and the population 
(Roughgarden 1972, Pianka 1974). When individuals within 
a population use resources differently, the degree to which 
two individuals overlap is variable (Bolnick et  al. 2002). 
An informative way to quantitatively describe diet overlap 
is using a network approach (Araújo et  al. 2008, 2010). 
When investigating patterns of resource use using networks, 
individuals are represented as one set of nodes and the types 
of resources they consume are represented as another set of 
nodes. A link between the two sets of nodes represents the 
feeding interaction between the individual and the resource 
(individual–resource networks – Pires et  al. 2011a, Tinker 
et al. 2012). The structural patterns formed by individual– 
resource networks, such as nestedness and modularity, can 
reveal distinct aspects of how individuals share resources. 
Nestedness is a pattern found in networks representing dif-
ferent types of interactions, such as the interaction between 
mutualistic species and interactions between individuals and 
their resources within populations (Bascompte et al. 2003, 
Pires et al. 2011a). In individual–resource networks, a nested 
pattern is found when the diet of selective individuals is a 
subset of the diet of less selective individuals (Araújo et al. 
2010, Pires et al. 2011a), indicating asymmetrical overlap in 
resource use among individuals. Modularity emerges when 
groups of individuals share similar diets but differ from 
other groups of individuals, forming subsets (modules) of 
individuals and resources (nodes) that are more connected to 
each other than with nodes outside the module (Tinker et al. 
2012). A modular individual–resource network indicates 
that a population can be characterized by discrete groups 
and niche overlap is low among individuals belonging to 
different groups but high among individuals within groups 
(Araújo et al. 2008).

The structure of individual–resource networks can pro-
vide information about possible mechanisms generating the 
observed pattern. For instance, the structure of individual– 
resource networks has been associated with different models 
of resource use based on ODT or to combinations of these 
models (Tinker et  al. 2012, Moleón et  al. 2012). Nested  
networks in which the diets of selective individuals were 
nested subsets of the diets of less selective individuals have 
been associated with the predictions of the shared prefer-
ences model (Araújo et al. 2010, Pires et al. 2011a). Modular 
patterns characterized by semi-isolated groups of individuals 
in a population, each having a different top-ranked prey has 
been considered to be consistent with the distinct preferences 

model (Araújo et al. 2008). Alternatively, modular networks 
may also indicate that the core prey selected by individuals  
is similar and alternative prey differed among individuals,  
a pattern consistent with the competitive refuge model  
(Tinker et al. 2012, Moleón et al. 2012).

So far, the relationship between ODT models and the 
overall structure of individual–resource networks has been 
established verbally, without a formal underlying quantitative 
framework. To unravel the role of the mechanisms associated 
with ODT in structuring resource use within populations we 
moved beyond the intuitive link between network structural 
patterns and ODT. Our main goal was to develop models 
that quantitatively associate each ODT model to network 
patterns. To derive predictions of network patterns emerging 
from ODT models, we developed an approach using rule-
based models analogous to food-web models (Williams and 
Martinez 2000, Stouffer 2010). This class of models has been 
used to test hypotheses on the structure of food webs and 
mutualistic interactions (Pimm 2002, Pires et  al. 2011b). 
The modeling approach presented here combines a set of 
possible feeding strategies, inspired in Svanbäck and and 
Bolnick’s (2005) models, with network rule-based models, 
allowing the investigation of potential mechanisms structur-
ing resource use within populations and testing hypothesis 
on the structure of individual–resource networks.

We combined numerical simulations and tools originated 
from network theory, such as spectral analysis of complex 
networks, to derive theoretical predictions associated with 
each model. The predictions were confronted with empiri-
cal data of classical examples of animal populations showing 
compelling evidence for intrapopulation variation in resource 
use, in order to determine which model encompass the most 
likely mechanisms underlying the structure of intrapopula-
tion variation.

Material and methods

Dataset

We used individual–resource networks describing qualita-
tively the patterns of resource use, i.e. presence absence of 
pairwise interactions of five populations from three animal 
species. The datasets used to build the networks in the pres-
ent study are classic examples of populations with consid-
erable amount of inter-individual diet variation, in which 
individuals within the population consistently use a subset 
of total population niche (Bolnick et  al. 2003). In these 
populations, inter-individual variation is a striking pattern 
since it is not explained by individuals’ age, sex, morphol-
ogy, environmental heterogeneity or sampling biases (West 
1986, 1988, Werner and Sherry 1987). Variation in resource 
use is also not associated to spatial heterogeneity, since  
there is compelling evidence showing that all individuals in 
these populations have access to the same resources (Bolnick 
et al. 2003). Therefore, the variation found among individu-
als in the datasets used is due to intrinsic differences across 
individuals.

The first network analyzed is from the species of finch 
Pinaroloxias inornata (Passeriformes, Thraupidae) from 
Cocos Island, Costa Rica (Werner and Sherry 1987). The 
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Pinaroloxias network comprised 21 sampled individuals that 
used seven different feeding strategies to acquire the resources 
they consume, leading to a connectance (C ) – the propor-
tion of interactions that do occur within a network given all 
possible interactions – of 0.34. The second and third net-
works analyzed are from two populations of the Californian 
predatory marine snail Nucella emarginata (Neogastropoda, 
Muricidae, West 1986). The Nucella A (site A) network com-
prised 20 sampled individuals that consumed seven resources 
(C  0.31) and the Nucella B (site B) network comprised 31 
sampled individuals consuming three resources (C  0.59). 
The fourth and fifth networks analyzed are from two popula-
tions of the predatory marine snail from Panama Vasula mel-
ones (Neogastropoda, Muricidae, West 1988). The Vasula A 
(site A) network comprised 42 sampled individuals that con-
sumed eight resources (C  0.29) and the Vasula B (site B) 
network comprised 21 sampled individuals that consumed 
14 resources (C  0.17).

Resource-use network models

The network models introduced here are a generalization  
of models describing variation in resource use within a popu-
lation in which an individual’s diet is determined by its geno-
type and affected by intraspecific competition (Svanbäck and 
Bolnick 2005). To adapt such models, they were simplified 
into minimal sets of simple rules defining the interactions 
between individuals and the resources it consumes, and 
generating individual–resource networks associated with 
feeding strategies. Each network model was used to gener-
ate an ensemble of theoretical networks based on real data 
(1000 theoretical networks for each empirical network). The 
empirical network can be described as a matrix A in which 
rows represent individuals and columns represent resources. 
The matrix element aij  1 when individual i consumes 
resource j and equals zero otherwise. A matrix T, represent-
ing a theoretical network, is created with the same number 
of individuals (rows) and resources (columns) registered in 
the empirical network. The same number of interactions 
registered in the empirical network is distributed across ele-
ments of T according to the set of rules associated with each 
model. To preserve basic aspects of network structure, the 
original number of individuals, resources and connectance 
from each empirical population is fixed for each simula-
tion. By doing this, any structural differences encountered 
between the theoretical networks and the empirical network 
is a consequence of the varying rules of resource use in the 
different models and not a side effect of changing the num-
ber of sampled individuals, resources or the total number 
of interactions recorded between individuals and resources. 
Below we describe each model.

Shared preferences model

The shared preferences model states that individuals within a 
population show the same rank-sequence of prey species but 
differ in their willingness to add new resources to their diets 
(Svanbäck and Bolnick 2005). This model has been previ-
ously related to nested patterns found in individual–resource 
networks (Araújo et  al. 2010, Pires et  al. 2011a, Tinker 
et al. 2012). To create a theoretical matrix (T) based on the 

rules of the shared preferences model, all individuals (matrix  
rows) have an interaction with the top-ranked resource,  
represented by the first column in the theoretical matrix. 
Then, the remaining interactions are distributed according to 
the following steps: 1) an individual i is selected with prob-
ability (pi) proportional to the number of different resources 
consumed by the individual in the empirical matrix:

pi 



k

k
i

mm

N

1∑
� (1)

where ki is the number of resource types consumed by the 
individual i in the empirical matrix A, km is the number of 
resource types consumed by the individual m in matrix A 
and N is the total number of sampled individuals from the 
population. This procedure ensures that individuals consum-
ing more resources in the empirical networks have a larger 
probability of adding a new resource to its diet; 2) a resource 
is added to the diet of the selected individual in a predict-
able order, determined by the column sequence. Resources  
(columns) in T are sorted based on the number of individu-
als that consumed each resource, as indicated by the marginal 
sum of T columns, so that the order of columns represent  
the population’s rank-sequence for resources. The shared 
preferences model’s key assumption is that all individuals 
share the same rank-sequence for resources, which is repre-
sented by column sequence in T. The new item added to the 
diet of individual i will be represented by changing tij from 
zero to one, in which j – 1 represent the food item previously 
added to the diet of individual i. It is worth noticing that 
the shared preferences model produces matrices that are as 
perfectly nested as possible given the recorded number of 
individuals, resources and interactions (perfect nestedness 
sensu Staniczenko et al. 2013), in which individuals that have 
the same degree (i.e. consume the same number of resources) 
share the same pattern of interaction, consuming the same 
resources. The same logic applies to resource types: resources 
with the same degree (i.e. consumed by the same number 
of individuals) are consumed by the same individuals. Hav-
ing said that, variation in nestedness across populations 
will occur even if the populations follow the shared prefer-
ences model due to variation in the number of individuals, 
resources and interactions recorded in each population.

Competitive refuge model

The competitive refuge model assumes that individuals 
within a population share the same top-rank resource and 
differ in their alternative resources. For instance, the top-
ranked resource can be a resource that provides sufficient 
energetic return, without demanding specific handling  
abilities or morphological adaptation for its consumption 
(Robinson and Wilson 1998). The use of alternative resources 
might involve tradeoffs and if there is variation in the way 
these tradeoffs operate among individuals, individuals will 
rely upon different secondary resources (Price 1987, Estes 
et  al. 2003). The competitive refuge model has been asso-
ciated with the pattern of resource use from different ani-
mal populations, such as threespine stickleback Gasterosteus  
aculeatus, Bonelli’s eagle Aquila fasciata and southern sea otters 
Enhydra lutris nereis (Araújo et al. 2008, Moleón et al. 2012, 
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The second null model states that the probability that an 
interaction occurs between an individual and a resource 
(pij) is proportional to the number of resources eaten by an 
individual and the number of individuals that eat a certain 
resource and is given by:
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in which Ki is the number of resources individual i consumes, 
and Kj is the number of individuals that consume resource j. 
Therefore, in addition to preserving the number of individu-
als, number of resources and connectance, the null model 
controls for the heterogeneity in the number of recorded 
resource types across individuals (and resources). Thus, these 
null models provide benchmarks, to investigate if the simple 
ODT models perform better in reproducing the observed 
patterns of overlap in resource use when compared to  
simply considering the effects of variation in the number of 
resources recorded for each individual in the field.

Caveats

The proposed models represent a simple way to build  
individual–resource networks given simple sets of rules 
thought to contribute to the observed patterns of interac-
tions. Although the proposed models embrace possible 
mechanisms leading to variation in resource use, different 
mechanisms could lead to similar patterns and there might 
be other processes not investigated in the present study that 
could also generate such variation in network structure. 
The original models proposed by Svanbäck and Bolnick 
(2005) were models based on genotypic differences describ-
ing patterns of resource use of five resources by three types 
of individuals. The generalization proposed accounts for  
n individuals, m prey items and different populations, which 
leads to a simplification that do not consider the genetic 
basis of individual preference, which is difficult to estimate 
in natural populations (but see Thompson and Pellmyr 
1991). Even though the rules used to build the theoretical 
networks are very simple, they can represent behavioral dif-
ferences associated with resource use. Experimental and long-
term observational data supports that differences in feeding 
patterns might be associated with complex behavioral rules 
(Svanbäck and Persson 2004, Tinker et  al. 2009) that can 
be decomposed in combinations of the simple rules studied 
here. Since the models we developed are static models they 
do not include learning, which may introduce an additional 
layer of variation by changing rank preferences over time. 
Learning may generate mixed patterns of resource use by 
combining assembly rules (Tinker et  al. 2012). We think 
network models that include learning may be the next logical 
step for exploring how individuals partition resources within 
populations. Finally, information on the feeding interaction 
between individuals and resources is qualitative, in a binary 
form, which takes into account the number of different 
resources a given individual consumes, without incorporat-
ing the proportion of each resource in an individual’s diet. 
Although the frequency of resource use is very important for 

Tinker et al. 2012). To create a theoretical matrix (T) based 
on the competitive refuge rules, all individuals consume the 
top-ranked resource, represented by the first column. Then, 
the remaining interactions are distributed as following:  
1) an individual i is selected with uniform probability; 2) a 
resource is selected with probability pj, which decays with 
the number of individuals consuming that resource:
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kj is the number of individuals consuming resource j. The  

term 1
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∑  represents all the possible 

interactions between individuals and resources that are not 
yet recorded; and R represents the total number of resources 
consumed by the population.

Distinct preferences model

The distinct preferences model states that individuals within 
a population have different top-ranked resources. This 
model was related to the pattern of resource use in a popu-
lation of threespine sticklebacks, in which two different diet 
groups of individuals were identified even when individuals 
were exposed to low intraspecific competition (Araújo et al. 
2008). To create a theoretical matrix (T), individuals were 
assigned to groups defined by their pattern of resource use 
observed in the empirical matrix. Resources were ranked 
according to the number of individuals that consume each 
resource in the empirical network. Individuals that con-
sumed the most eaten resource by the population were 
assigned to group one. Individuals that consumed the sec-
ond most eaten resource by the population and that were 
not assigned to group one were assigned to group two and 
so on until all individuals were assigned to a group. A key 
assumption associated with this model is that most con-
sumed resources are the core resources defining groups in 
the population. This assumption is rooted on the predic-
tion derived from ODT that preferred resources should be 
eaten whenever possible (Stephens and Krebs 1987, Araújo 
et al. 2008). In the theoretical matrix (T), each individual 
consumes the resource that defines its groups. The remain-
ing interactions are distributed as following: 1) an individ-
ual is selected with uniform probability; and 2) a resource 
is selected with uniform probability.

Null models

Two different null models were used to generate theoretical 
networks in order to test whether the patterns encountered 
could be generated by a random assignment of interactions 
between sampled individuals and resources (Bascompte 
et al. 2003). In the first null model – a bipartite version 
of a Erdös–Renyi random graph – all interactions are 
equally probable and proportional to the size (R  N) and  
connectance of the empirical network:
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are assigned to a single group) to 1 (individuals and resources 
form multiple and isolated modules). The metric M was  
calculated using NETCARTO (Guimerà and Amaral 2005) 
and is defined as:

M
I
I

k
I

s s
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where Nm is the number of modules found by the algorithm, 
Is is the number of interactions within the module s, I is 
the total number of interactions recorded and ks is the sum 
of all interactions within module s. Although M calculates 
modularity considering the network to be unipartite, the 
null model we used retains the bipartite structure consid-
ering two sets of nodes and controlling for any effects this 
could have in modularity estimates.

Spectral analysis

In network analysis, there is a trade off between the amount 
of information used for pattern recognition and the inter-
pretation of patterns. Network-level metrics such as degree  
of nestedness and modularity summarize information of  
network organization as single indexes, allowing easy recog-
nition and interpretation of patterns in networks. However, 
the maximum amount of information in a matrix formed  
by n individuals and m resources is n m. Therefore, by  
summarizing network organization into a single index a lot  
of information is ignored. Finer-scale network organiza-
tion can be accessed through matrix spectra, which is the 
eigenvalue distribution of the associated matrix. An individ-
ual–resource matrix has n m eigenvalues. In this sense, as 
a consequence of the inequality 1  n m  n  m in any 
system with more than one resource and one individual,  
the eigenvalue distribution provides a much more complete –  
although still incomplete – characterization of network orga-
nization than single indexes (Farkas et al. 2001, de Aguiar 
and Bar-Yam 2005, Pavlicev et al. 2009).

Matrix spectra can only be computed for square matri-
ces, therefore, all matrices, empirical and theoretical, were 
converted into a square matrix with both individuals and 
resources depicted in rows and columns. We define a square 
matrix Q in which the dimensions are S S, S  n  m. 
The first n rows (and columns) represent the n individu-
als and the rows (columns) n  1 to n  m represent the 
m resources. The equality q (i, j)  q(j, i)  a(i,j  n) holds 
if i  n and n  j  n  m. All additional elements in Q  
are non-informative and zero by definition (individual– 
individual and resource–resource elements). Thus, it is 
worth noting that the new square matrix contains the very 
same information as the original matrices about the interac-
tions between individuals and resources. The transformation 
to a square matrix allows the computation of eigenvalues, 
which are not defined for non-square matrices as the original 
individual–resource matrices. The distribution of eigenval-
ues is affected by matrix size, connectance, and the patterns 
of interaction of each individual and each resource. How-
ever, given that the empirical and theoretical matrices have 
the same dimensions and the same connectance, the number 
of eigenvalues describing the empirical matrix and its theo-
retical counterparts is the same and their differences cannot 
be associated with neither matrix size nor differences in the 

a number of ecological processes, it is also very sensitive to 
sampling (Bolnick et al. 2002). Thus, we opted for a conser-
vative approach by using binary networks.

Model reproducibility

The first step in analyzing model’s performance is to  
determine if the theoretical networks produced by the mod-
els have similar features when compared with the empirical 
networks. To test the ability of each model in reproducing the 
structure of empirical networks we compared the empirical 
value of nestedness and modularity against the distribution 
of nestedness and modularity values for the 1000 theoreti-
cal networks generated by each model. A confidence interval 
comprised 95% of the values from the theoretical distri-
bution and a model was considered to reproduce a given  
structural property of an empirical network if the empirical 
value of the metric fell within the interval confidence.

Nestedness

A nested pattern of interaction indicates that the diet of 
selective individuals is a subset of the diet of less selective 
individuals (Pires et al. 2011a). We used the metric NODF 
to quantify nestedness (Almeida-Neto et al. 2008). NODF 
ranges from zero, when interactions show non-nested pat-
terns such as extreme modularity, to 100, when interactions 
are perfectly nested. NODF was calculated using the pro-
gram ANINHADO (Guimarães Jr and Guimarães 2006) 
and is defined as following:
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N N R R
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2

1
2
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where ∑Npaired is the degree of nestedness calculated for all  
pairwise individuals and resources (Almeida-Neto et  al. 
2008).

Nestedness can also be assessed through the leading 
eigenvalue of a matrix (Staniczenko et  al. 2013). When  
comparing matrices with the same dimensions and the same 
connectance, larger leading eigenvalues correspond to net-
works with higher nestedness (Staniczenko et  al. 2013). 
Another advantage of using the leading eigenvalue when 
inferring nestedness is that eigenvalue distribution is an 
invariant property of a matrix and does not change with 
column or row permutation. To test the sensitivity of our 
results to the approach used for nestedness characterization, 
we repeated all analyses using this alternative technique of 
estimating nestedness (Supplementary material Appendix 1 
Fig. A1). See section ‘Spectral analysis’ for a description of 
how eigenvalues were computed.

Modularity

Modules in individual–resource networks occur if indi-
viduals within a population consume resources in a similar 
fashion and if resource types share the same individual con-
sumers. We used the metric M to assess modularity, calcu-
lated using the simulated annealing algorithm (Guimerà and 
Amaral 2005). M ranges from 0 (individuals and resources 
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Results

Nestedness was a recurrent pattern in all analyzed popula-
tions. All networks, except Nucella A network (p  0.999), 
were significantly more nested than expected by both null 
models, which keeps the number of sampled individuals, the 
number of resources recorded and the number of observed 
interactions, but assigns interactions randomly (Fig. 1a).  
In contrast, all networks, except for Nucella A network  
(Fig. 1b), are less modular than expected according to both 
null models. Therefore, all analyzed populations, with excep-
tion of Nucella A, are characterized by considerable degree  
of asymmetrical overlap between diets of individuals  
(nestedness) and no evidence suggesting individuals form 
discrete groups based on feeding records (modularity).

The models strongly differ in their ability to reproduce 
the empirical patterns of nestedness. In general, the shared 
preferences model produced networks that were more nested 
than the empirical ones, only reproducing the nestedness  
of the second Nucella population (Nucella B; Fig. 1a, Supple-
mentary material Appendix 1 Fig. A1). Similarly, the com-
petitive refuge model generally produced networks that were 
more nested than the empirical ones and was able to repro-
duce the empirical NODF value of all but two populations, 

number of links, but only with differences in network struc-
ture (see Pavlicev et al. 2009 for a similar approach in the 
study of the evolution of complex phenotypes). For each 
transformed squared matrix (Q) all eigenvalues were sorted 
in decreasing values. Eigenvalue deviation was computed 
between theoretical and empirical matrices as following:

σ
λ λ




 ei Qii

L

Q

G

G

( )∑∑ 2

11 � (7)

where lei is the ith eigenvalue of the square empirical matrix, 
lQi is the ith eigenvalue of squared theoretical matrix, L  
is the number of eigenvalues of the matrices, and G is the 
number of simulated matrices generated in a simulation 
(which we set as 1000). The s is a proxy for the goodness of 
fit from a given model. The model with the lowest s is con-
sidered the model that generates matrices best resembling 
the observed distribution of links between individuals and 
resources in the empirical network.

Data deposition

Data available from the Dryad Digital Repository:  
< http://dx.doi.org/10.5061/dryad.2h1q2 > (Lemos-Costa 
et al. 2015).

(a)

(b)

Shared preferences
Competitive refuge

Distinct preferences
Null model 1

Null model 2

Figure 1. Model reproducibility of the five analyzed populations. The x-axis represents the values of network metrics. Vertical dashed lines 
represent empirical values of metrics estimated from empirical networks. Bar length indicate 95% confidence intervals. (a) Reproducibility 
of nestedness values. (b) reproducibility of modularity values.
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and hence producing networks whose structure deviates the 
most when compared with the empirical networks (Fig. 2). 
In fact, both null models performed better than the shared  
preferences model, but not as good as the competitive  
refuge and distinct preferences models in all populations but 
Nucella B. For all other populations, the competitive ref-
uge model and the distinct preferences model had a similar  
performance, producing networks whose spectrum best 
resembled the spectrum of the empirical networks.

Discussion

Recent work based on network theory allowed the character-
ization of novel patterns of niche variation, which led to new 
hypotheses about intrapopulation niche organization (Araújo 
et al. 2008, 2010, Pires et al. 2011a, Tinker et al. 2012) and 
its consequences to ecological processes (Gómez et al. 2011, 
Cantor et  al. 2013). In this work, we introduced network 
models of resource use to the study of niche variation within 
populations. These rule-based models were able to reproduce 
the structure of empirical individual–resource networks. These 
findings contribute to our understanding of intrapopulation 
variation in resource use in three different ways.

First, the approach developed here combining network 
models with structural and spectral analysis helped us to 
investigate the patterns resulting from intrapopulation varia-
tion in resource use. A modeling approach consisting of 
simple rule-based models allows quantitative predictions to 
be made in terms of network structure given a simple set 
of assumptions. This approach has been used to unravel 
the structure of food webs, its robustness against perturba-
tions and investigate the possible outcomes resulting from 
different ecological and evolutionary processes (Williams 
and Martinez 2000, Stouffer 2010, Cohen et al. 2011). We  
suggest future work should focus on extending this approach 
to investigate the effects of incorporating foraging traits 
known to affect network structure on patterns of resource 
partitioning (Beckerman et al. 2006).

Our analysis of the network spectra highlights the useful-
ness of spectral analysis to describe and compare network 
organization more accurately. Nestedness and modularity 
are network-level patterns and, as we have shown, different 
sets of rules might lead to the same levels of nestedness and 
modularity. Spectral analysis is an approach largely used in 
physics to better understand patterns of connection among 
nodes along with dynamic behavior of different sorts of  

Nucella A and Vasula A (Fig. 1a). When using the leading 
eigenvalue as nestedness estimator, the matrices produced 
by the competitive refuge model were more nested than the 
empirical ones for three populations (Pinaroloxias, Nucella  
A and Vasula A networks, Supplementary material Appendix 
1 Fig. A1). Finally, the distinct preferences model produced 
theoretical networks that were able to reproduce the NODF 
value of all networks except for the network describing  
the interaction of Pinaroloxias inornata (Fig. 1a) and for 
nestedness estimated by the leading eigenvalue, the distinct 
preferences model could only reproduce the leading eigen-
value from Nucella A (Supplementary material Appendix 1 
Fig. A1).

Regarding modularity, the shared preferences model 
produced networks that were on average less modular than 
the empirical ones, and was able to reproduce the empirical 
value of modularity of three analyzed networks: Pinarolox-
ias, Nucella B and Vasula B (Fig. 1b). The competitive refuge 
model reproduced the empirical value of modularity of Pin-
aroloxias, Vasula A and Vasula B networks (Fig. 1b). Finally, 
the distinct preferences model generally produced networks 
that were more modular than the empirical ones, except for 
Nucella A, and was able to reproduce the empirical modular-
ity value from Pinaroloxias and Nucella B networks (Fig. 1b).

To sum up, all models were able to reproduce at least 
one feature of the empirical networks (Table 1), meaning 
that the models are capable of generating networks whose 
overall structure, assessed through nestedness and modular-
ity, are similar to the empirical networks. For some popula-
tions a single candidate model could be associated with a 
given network pattern. For example, the pattern of resource 
use observed for Pinaroloxias is significantly nested and the 
competitive refuge model was the only model able to gen-
erate networks with nestedness degree (NODF and leading 
eigenvalue) similar to the empirical one (Fig. 1a, Table 1). 
Nevertheless, for most cases, different models were able to 
reproduce the same property, nestedness or modularity, of 
a given empirical network. For instance, for Pinaroloxias, all 
proposed models could generate theoretical networks with 
a degree of modularity similar to the one estimated for the 
empirical network (Fig. 1b, Table 1).

We used spectral analysis to explore the performance of the 
different models in greater detail. The three models proposed 
presented different performances for all but a single popula-
tion (Nucella B) (Fig. 2). Matrix spectra revealed that the 
shared preferences model presented the worst performance 
among all models, having the highest eigenvalue deviation, 

Table 1. Summary of models reproducibility indicating network property reproduced by the networks generated by each model’s sets of rules. 
Numbers indicate network size (individuals  resources).

Network Shared preferences Competitive refuge Distinct prefences Null model 1 Null model 2

Pinaroloxias (21  7) modularity nestedness 
modularity

modularity

Nucella A (20  7) nestedness nestedness nestedness
Nucella B (31  3) nestedness

modularity
nestedness nestedness

modularity
Vasula A (42  8) nestedness

modularity
nestedness

Vasula B (21  14)
modularity

nestedness
modularity

nestedness
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Figure 2. Eigenvalue deviation. s is the mean value of the summed square deviation from the empirical eigenvalues and all the simulated 
eigenvalues of a given model and bars are the standard deviation. Smaller values indicate best model performance.

networks (de Aguiar and Bar-Yam 2005). In ecology it has 
been applied to understand the role of antagonistic and 
mutualistic interactions in the stability of networks and to 
characterize nestedness in mutualistic networks (Allesina 
and Tang 2012, Staniczenko et al. 2013). We used spectral 
analysis as an additional measure of nestedness in networks 
and to determine which of the candidate models produce 
networks better resembling the empirical networks. When 
investigating the structure of the networks at a finer scale, 
using network spectra, we were able to differentiate among 
candidate models. Specifically, spectral analysis revealed that 
the competitive refuge model and distinct preferences model, 

which were the two models with the best fit, performed simi-
larly. Additionally spectral analysis showed that even though 
the shared preferences model could generate networks that 
reproduced global aspects of the structure of empirical net-
works, this model performed worse than all other models, 
including both null models.

Second, our analyses provide further insights on how 
foraging strategies translate into non-intuitive patterns of 
niche overlap. By creating sets of rules that simulate pos-
sible mechanisms underlying intrapopulation variation, we 
showed that several routes could lead to a nested structure: 
a recurrent pattern in individual–resource networks (Araújo 
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the feeding rules when consuming preferred prey versus non-
preferred prey (West 1988, Tinker et al. 2012). In the finch 
Pinaroloxias inornata, feeding patterns appear to involve 
complex behaviors, whereby individuals can vary from one 
to a few feeding strategies to acquire resources (Werner and 
Sherry 1987). For instance, individuals can glean branches 
and leaves for small insects, probe and glean dead leaves for 
crickets and cockroaches, probe flowers and feed upon extra-
floral nectar. If some of these strategies were easier to master, 
most individuals would rely upon this particular strategy, 
leading to a structure consistent with the competitive refuge 
model. Additionally, mastering each feeding strategy appears 
to have an observational learning component, dependent on 
the interactions individuals established during their devel-
opment (Werner and Sherry 1987). Juvenile individuals 
that followed adults using certain foraging strategies during 
development may have specialized in acquiring resources 
using the observed technique.

For all populations studied, feeding specialization appears 
to have an important learning component (West 1986, 
1988, Werner and Sherry 1987), and these learning tech-
niques, and consequently individuals’ patterns of resource 
use, may involve individual differences in preference ranks 
between individuals. Learning behavior can also change the 
predictions associated with ODT, reducing mean searching 
time, when individuals learn to use clues to search for their 
preferred resources more effectively (Thompson and Pellmyr 
1991) or master techniques associated with consumption of 
specific prey (Tinker et  al. 2009). Here we explored static 
models, but dynamical models that include a learning com-
ponent could use the models we propose here as a starting 
point. If learning is included in the models, individuals’ ranks 
are not fixed and can change taking into account functional 
trade-offs, morphological constraints or cognitive experiences, 
generating mixed assembly rules (Araújo et al. 2008, Tinker 
et al. 2012). The challenge is to parameterize such models, as 
the rates of learning and the consequences learning has for 
foraging patterns are unknown for most populations. By now, 
our results support the notion that no single model accounts 
for resource use patterns across all populations. This suggests 
that even though resource use patterns can be remarkably 
consistent (Pires et  al. 2011a), the underlying mechanisms 
generating these patterns can be highly context dependent 
(Tinker et al. 2012, Moleón et al. 2012).

The approach we introduced here is a first step towards 
quantitatively connecting foraging models and network 
structure. We expect future work will be able to benefit from 
this approach to study interindividual variation and resource 
use patterns in other populations. Moreover, further devel-
opment of our network model approach may allow incorpo-
rating behavior and other traits more explicitly. In this sense, 
a natural follow up in the analysis of the underlying mecha-
nisms shaping individual–resource networks is to explore 
how learning behavior is structured within populations and 
how learning and experience could affect the rank sequences 
within populations and hence patterns of resource use.
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et al. 2010, Pires et al. 2011a). The nested pattern in individ-
ual–resource has been related to the shared preferences model 
(Araújo et al. 2010). The shared preferences model assumes 
that all individuals in a population share the same rank pref-
erence. This assumption leads to a nested structure as the 
diet of more selective individuals, those that are less likely to 
consume low-ranked resources when preferred resources are 
limited, would be a subset of the diets of less selective indi-
viduals. Using network models that incorporate such rules we 
showed that theoretical networks generated under the shared 
preferences model do present a nested structure. However, 
this model often overestimates the degree of nestedness when 
compared with empirical networks (Fig. 1a). In contrast, 
alternative models – in which individuals share the same 
top-ranked prey and differ in their alternative prey choices 
(competitive refuge) – not only lead to nested structures in 
individual networks, but can reproduce the degree of nest-
edness observed in empirical networks (Fig. 1a). Moreover, 
these results bring forth the question if similar principles, at 
species level, could contribute to nested patterns in species 
networks (Bascompte et al. 2003). We hypothesize that the 
mechanisms embedded in the foraging models considered 
here, such as distinct preferences propelled by competitive 
interactions or differences in the willingness to consume 
alternative resources under resource limitation, could act  
at the species level generating nestedness in mutualistic  
(Bascompte et  al. 2003) and antagonistic (Pires and 
Guimarães 2013) networks. In this sense, modeling 
approaches such as the one proposed here offer appropriate 
tools to go beyond pattern description and investigate pos-
sible rules underlying the patterns observed in nature.

Third, by connecting foraging models and network  
structure we can infer how behavioral constraints result in 
different resource use patterns for different populations. 
The interindividual variation in the populations studied has 
been discussed in terms of behavioral and cognitive differ-
ences between individuals (West 1986, 1988, Werner and 
Sherry 1987). For instance, in Nucella emarginata the dis-
tinct preferences model presented a better performance for 
population A. The distinct preferences model is consistent 
with individuals varying their hunting techniques associated 
with each prey, which has been proposed as the explanation 
for the interindividual variation in N. emarginata popula-
tions (West 1986). Nucella emarginata uses different tech-
niques for consuming barnacles, limpets and mussels. These 
different techniques consist in differences regarding drilling 
location on prey shell. Assuming these techniques have a 
learning component, different individuals could specialize in 
different techniques during their lifetime, generating differ-
ences in resource use patterns. In the case of Vasula melones, 
we were not able to differentiate between the competi-
tive refuge model and the distinct preferences model. This 
could be due to the fact that the rules embedded in each  
model are acting simultaneously in the natural populations 
(Tinker et  al. 2012). False limpet (genus Siphonaria) and 
oyster (genus Ostrea) are the two prey species that are prefer-
entially consumed by both populations of V. melones. In site 
B where preferred prey were less abundant, the population 
presented a broader range of prey species (West 1988). In 
this sense, the absence of a single pattern of prey selection for 
this species could indicate among-population differences in 
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