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Lineages arriving on islands may undergo explosive evolutionary radiations

owing to the wealth of ecological opportunities. Although studies on insular

taxa have improved our understanding of macroevolutionary phenomena,

we know little about the macroevolutionary dynamics of continental

exchanges. Here we study the evolution of eight Carnivora families that

have migrated across the Northern Hemisphere to investigate if continental

invasions also result in explosive diversification dynamics. We used a Bayesian

approach to estimate speciation and extinction rates from a substantial dataset

of fossil occurrences while accounting for the incompleteness of the fossil

record. Our analyses revealed a strongly asymmetrical pattern in which

North American lineages invading Eurasia underwent explosive radiations,

whereas lineages invading North America maintained uniform diversification

dynamics. These invasions into Eurasia were characterized by high rates of

speciation and extinction. The radiation of the arriving lineages in Eurasia

coincide with the decline of established lineages or phases of climate

change, suggesting differences in the ecological settings between the

continents may be responsible for the disparity in diversification dynamics.

These results reveal long-term outcomes of biological invasions and show

that the importance of explosive radiations in shaping diversity extends

beyond insular systems and have significant impact at continental scales.
1. Introduction
When a lineage colonizes a new environment it may initiate an explosive evol-

utionary radiation characterized by an accelerated accumulation of species and

a burst in ecological diversification [1,2]. This phenomenon is particularly well

documented for insular vertebrates [3,4]. An iconic example is the radiation of

finches in the Galapagos archipelago where all 15 species of finches descend

from a single migrant species and today use a suite of different food resources

that is comparable with what is used by several different bird families in the

mainland [5]. Anoles of the Greater Antilles are another well-studied case. In

this lineage the radiation occurred independently in each island with similar

ecomorphs arising after each colonization by different ancestral species [6].

These early bursts of diversification, sometimes referred to as adaptive

radiations [2], are recurrently found in many other insular groups such as the

Hawaiian honeycreepers [7] and lobeliads [8], the Gulf of Guinea white-eyes

[9] and Madagascan vangids [4].

The explosive dynamics of evolutionary radiations are often interpreted as a

consequence of the availability of unexplored ecological opportunities [1–3].

When arriving in an island with low diversity, a given species may find itself

in a scenario where the evolutionary constraints imposed by biotic interactions

(e.g. competition, predation) are weak in comparison to the mainland [10]. This

ecological release allows the niche of the immigrant species to broaden and

species with different ecologies might emerge from a single lineage [3,10].

As diversity increases, ecological opportunities lessen, speciation rate declines

and the net diversification rate levels off [11]. The levelling-off of diversification
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can also derive from increased extinction as population sizes

diminish thus increasing the likelihood of extinction due to

stochastic effects [12]. In this sense, islands can be seen as

macroevolutionary test tubes where evolution, from the

perspective of a given migrant lineage, can experiment with

different forms and functions.

On continents, the diversification dynamics of a lineage

may be constrained by the dynamics of multiple co-occurring

clades [13]. However, as with island radiations, an immigrant

lineage may undergo an evolutionary radiation when arriving

in a new continent. According to the ecological opportunity

hypothesis, this will be more likely if the immigrant has a sub-

stantially different ecology (e.g. using otherwise unexploited

resources), or if the continent is poor of species with similar

ecologies. For instance, a phylogenetic study suggests that rat

snakes (Colubridae: tribe Lampropeltini) underwent an explo-

sive diversification in North America after migrating from

Eurasia through the Bering land bridge [14]. This pattern is

interpreted as the outcome of the colonization of a continent

where ecological opportunities were plentiful, since the exist-

ing diversity of snakes in North America at the time of

immigration was relatively low [14]. Likewise, a phylogeny

of muroid rodents suggests that a rapid radiation characterized

by a burst in speciation rates, followed the arrival to South

America [15]. Muroid rodents originated in Eurasia during the

Eocene but only invaded South America later in the Miocene

after colonizing and dispersing through North America. Thus,

intercontinental migrations may also provide the opportunity

for lineages to flourish in new ecological settings.

The connections between continents changed over time

creating new routes for biotic exchange [13]. The fossil record

suggests faunal exchanges between North America and

Eurasia were particularly important in shaping mammalian

faunas in both continents through the whole Cenozoic

[16–19]. Yet, our understanding on the evolutionary dynamics

of such large-scale invasions is still elusive. Here we focus on

eight families of Carnivora with a history of migration and

diversification across the Northern Hemisphere [17,20] and

investigate the macroevolutionary dynamics involved in such

exchanges. We use the fossil record of North American and

Eurasian carnivorans and a Bayesian approach that jointly

estimates speciation and extinction rates and their temporal

variation, while incorporating the fossilization and sampling

processes [21]. We analysed the dynamics of each family separ-

ately given that, in general, families represent evolutionary

lineages with species that tend to share similar ecologies. We

expected to find an explosive radiation when a given family

established itself in a continent for the first time.
2. Methods
(a) Dataset
We compiled information on fossil occurrences of carnivores in

North America and Eurasia from the Paleobiology database

(PBDB: http://paleobiodb.org) and NOW database (Fortelius, M.:

Coordinater, 2014, New and Old Worlds database of fossils:

www.helsinki.fi/science/now/; data downloaded between April

and May 2014). We included only fossil occurrences identified at

the species level and we adopted a conservative measure and

excluded all occurrences where uncertainty about taxonomy was

explicit in the database, i.e. those occurrences where species or

genus were marked with qualifiers such as sp., cf., aff., and ‘?’,
which code different degrees of taxonomic uncertainty [22].

The same occurrence may be registered in both PBDB and NOW

databases. To avoid including duplicates when merging datasets

from both databases, when the same occurrences of a given species

were present in both datasets we excluded one of the duplicates. To

identify potential duplicated occurrences, we first checked species

identity and whether the estimated time range for the occurrences

were similar. Then, if latitude/longitude estimates also matched

for similar occurrences in different databases we discarded one of

the occurrences. We adopted a threshold of 0.1 decimal degrees

of latitude and longitude as an indicator that occurrences registered

in both databases were from the same locality. Because latitude/

longitude values assigned to some occurrences were allegedly

approximate based on nearby reference locations, we also double-

checked those occurrences and removed potential duplicates

when the formation, age estimates and location were similar

enough so occurrences could be considered the same. The NOW

database focuses on Eurasian Neogene occurrences whereas the

mammal dataset of PBDB includes preferentially North American

occurrences. For this reason the databases were complementary

and the number of duplicates was only high for Eurasian Neogene

occurrences but proportionally low for the overall dataset, which

includes many occurrences from the Palaeogene and Quaternary

(see the electronic supplementary material, data S1 and S2).

Because the method we used to estimate speciation and

extinction rates requires the ages of fossil occurrences (see

below), we also excluded from the analyses the occurrences

with very poor temporal resolution, here defined as occurrences

with temporal range larger than 15 Myr. After the initial filters,

these occurrences corresponded to less than 1% of the occur-

rences of each family. We checked our merged dataset for

synonyms using the most recent taxonomic reviews of each

family or subfamily published in the literature (see refs [5–15]

in the electronic supplementary material) and other sources

such as recent papers on the diversification of carnivorans that

also used both databases [23]. All the raw data are accessible

from PBDB and NOW database, but the final revised dataset

with the removed duplicates can be found in the electronic

supplementary material, data S1–S2.

Given our interest in diversification dynamics of families that

occur in both North America and Europe, we split the full dataset

containing all Carnivora lineages at the family level at each conti-

nent. The main dataset included the following families within

order Carnivora: Amphicyonidae, Ursidae, Canidae, Mustelidae,

Mephitidae, Procyonidae, Felidae, Barbourofelidae. We adopted

a minimum of five species as a threshold for the analysis, resulting

in the exclusion of families Ailuridae and Hyaenidae in North

America and Nimravidae in Eurasia, which had a total diversity

smaller than five species in our dataset. To get a better sense of

the ecological settings in both continents, we also analysed the

fossil occurrences of hyaendontid Creodonta and families that

were present preferentially in one continent such as Hyaenidae,

Percrocutidae and Viverridae in Eurasia and Nimravidae in

North America. We did not analyse other earlier groups such as

oxyaenid Creodonta as they had little temporal overlap with the

carnivorans we focus on here. A list with the number of species

and occurrences of each family can be found in the electronic

supplementary material, table S1.

Because there is a lot of uncertainty on the taxonomy of early

musteloids [24–27], we analysed the crown group of Mustelidae,

sometimes referred as ‘neomustelids’ [24]. In the baseline analysis,

we followed the classification scheme proposed by Finarelli [24]

and removed all early musteloids assigned to Mustelidae in the

PBDB and NOW databases. To test the sensitivity of our results

to the different taxonomic schemes proposed for Mustelidae, we

repeated the analysis excluding early North American fossils,

often grouped together in subfamily Oligobuninae [25], following

recent assessments on the taxonomy of the group [26,27]. We also
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split Mustelidae and Mephitidae, which are not classified as separ-

ate families in the original databases, but are separate monophiletic

groups according to the most recent studies [24,28]. Additionally,

to further check the influence of Mustelidae taxonomy in our esti-

mates, we analysed the whole clade Musteloidea, which includes

families Mustelidae, Procyonidae, Ailuridae and Mephitidae.

The method we used to infer diversification dynamics also

requires information on the number of extant species within

each lineage. We obtained these estimates from the International

Union for Conservation of Nature database (http://www.iucn-

redlist.org/ accessed between April and May 2014). The

number of extant species was considered separately for each con-

tinent. Thus, for instance, if a species is extant, but locally extinct

in Eurasia, it was not listed as an extant species when analysing

the diversification of its lineage in Eurasia.
Soc.B
282:20151952
(b) Estimating diversification rates
To assess diversification dynamics of each lineage in each continent

we used a hierarchical Bayesian approach [29] in which fossil occur-

rences are modelled as the result of two processes: preservation and

diversification. This method, implemented as an open-source

PYTHON program (PYRATE [21]), uses all fossil occurrences of a

given taxon to estimate the parameters of the preservation pro-

cesses, the times of speciation and extinction, the speciation and

extinction rates and rate shifts through time. Assuming preser-

vation is a stochastic process, it can be modelled as a non-

homogeneous Poisson process in which the rate parameter is a

function of time and the expected number of fossil occurrences

per lineage per million years (Myr) is given by the preservation

rate q, which is estimated from the data [21]. Thus, times of specia-

tion and extinction are estimated while taking the preservation

process into account, instead of assuming that first and last appear-

ances in the fossil record represent the true speciation and

extinction times. A birth–death process (with constant or variable

rates) is set as a prior on the times of speciation and extinction of

all taxa and is itself estimated from the data.

The PyRate method has been fully tested with simulations and

shown to provide accurate estimates of preservation, speciation,

and extinction rates under a range of diversification scenarios

and preservation regimes [29]. It is robust against incomplete

taxon sampling and variations of the preservation process across

lineages and through time [29]. However, as currently im-

plemented, PYRATE cannot distinguish between in situ speciation

and immigration, thus estimates of speciation time and speciation

rates may include both speciation and immigration events. This

limitation is also imposed by the fact that very few species (between

zero and 3% of all species considering each family separately) have

occurrences in both Eurasia and North America, making it difficult

to assign the first occurrence of a species to a speciation or a

migration event. We note that for the sake of our argument this

limitation is not severe, as the addition of a new species either by

in situ speciation or by immigration represents a change in the

dynamics at the initial stage of colonization of a continent.

PYRATE jointly estimates all model parameters, including the

number of temporal rate shifts, using a birth–death Markov

chain Monte Carlo algorithm (BDMCMC) [21,29]. For each family

in each continent we ran 10 000 000 BDMCMC iterations, discarded

the first 1 000 000 as burn-in, and sampled every 1000 iterations to

obtain posterior parameter estimates. We used TRACER [30] to moni-

tor chain mixing and effective sample sizes. Fossil occurrences in

the raw data are often assigned a temporal range, which depicts

the uncertainty on their age. To account for this uncertainty, we ran-

domly drew ages within the range of each occurrence, generated

100 randomized datasets for each family in each continent and

replicated the analyses on the randomized datasets [29].

We generated rates through time (RTT) plots to summarize the

results on diversity dynamics. The significance of the differences
between rates can be inferred from the overlap between the pos-

terior credible intervals and posterior point estimates [31] and

the support for a given number of rate shifts can be assessed

from BDMCMC sampling frequencies. Using the estimated times

of speciation and extinction we also computed the number of

living species through time to infer range-through diversity trajec-

tories of each family in Eurasia and North America. To infer the

direction of migration, we used the estimated age of origin in

each continent.
3. Results
Of the eight Carnivora families analysed, four seem to have

appeared earlier in North America and the other four in Eurasia

(figure 1). Root age estimates unambiguously suggest Canidae,

Amphicyonidae, Ursidae and Mustelidae migrated from North

America to Eurasia whereas Mephitidae and Procyonidae

went in the opposite direction (figure 1). Those estimates also

suggest Barbourofelidae and Felidae moved from Eurasia to

North America. Although root age posteriors for these two

families overlap, the best estimates (maximum a posteriori) are

significantly younger for North America (figure 1).

Our results on the diversification history of Carnivora

lineages indicate a strong asymmetry in the dynamics of

lineages invading North America and Eurasia. Lineages

migrating into Eurasia—Amphicyonidae, Ursidae, Musteli-

dae and Canidae—invariably experienced an early burst

in diversification. Diversification of Amphicyonidae and

Ursidae rose sharply in Eurasia during the Oligocene after

a short period of low diversification (figure 2) produced by

the interplay of both high speciation (and potentially immi-

gration, but see Discussion) and extinction rates (figures 3

and 4 and the electronic supplementary material, figures S1

and S2). As extinction decelerated (figure 4), diversification

reached its peak before the drop in speciation, which reduced

the net diversification. The diversification rate of Mustelidae

peaked roughly at the same time (approx. 24–20 Myr) due to

high initial speciation and low extinction rates (figures 3 and 4

and the electronic supplementary material, figure S3). By contrast,

changes in the diversification dynamics of Amphicyonidae,

Ursidae and Mustelidae were less pronounced in North America,

where they first appeared, showing no evidence of radiation

bursts nor an increase in rates at the same geological time those

lineages show a burst in Eurasia (figure 2 and the electronic

supplementary material, figures S1–S3).

Canidae invaded Eurasia at a later time (approx. 10–7 Myr),

in the Late Miocene, and also underwent a burst of diversi-

fication (figure 2 and the electronic supplementary material,

figure S4). When compared with the dynamics in North

America, the radiation of Canidae in Eurasia is characterized

not only by higher speciation but also higher extinction rates

(figures 3 and 4). Canidae also experienced an initial burst of

diversification in North America during the Eocene when

they originated (approx. 40 Myr; figure 2 and the electronic

supplementary material, figure S4), presumably from another

North American ancestral Carnivora lineage [32].

A model with one or more shifts in speciation rates is statisti-

cally supported for all the lineages invading Eurasia (electronic

supplementary material, table S2). By contrast, the lineages

that migrated from Eurasia to North America—Procyonidae,

Mephitidae, Felidae and Barbourofelidae—showed more

uniform diversification dynamics, without rate shifts (electronic

supplementary material, table S2) and no evidence for initial
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bursts in speciation after migration into North America or

during their evolutionary history in Eurasia (figures 2 and 3

and the electronic supplementary material, figures S5–S8).

Similarly, other Eurasian lineages that did not establish in

North America, such as Viverridae and Hyaenidae did not

undergo diversification bursts (electronic supplementary

material, figure S9). Diversity trajectories reflect the two oppos-

ing dynamics described above. For lineages that invaded

Eurasia we see a sharp increase in diversity while those lineages

that invade North America show less pronounced changes in

diversity (electronic supplementary material, figures S10–S12).
For most lineages, in both continents, the net diversification

rates dropped below zero during the Miocene (23–5.3 Myr) or

close to the Miocene–Pliocene transition (approx. 5 Myr;

figure 2). In general, this negative diversification occurred in

response to increased extinction rates, but the shifts in extinction

rates were more pronounced in Eurasia than in North America

(figure 4). The decline of Procyonidae in Eurasia [33] and

Amphicyonidae in North America [34], are owing to a decrease

in speciation rather than increase in extinction rates (figure 3).

Because Amphicyonidae and Ursidae invaded Eurasia

during the Palaeogene, which has a poorer fossil record

http://rspb.royalsocietypublishing.org/
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[23], we questioned whether the early bursts in speciation

found for these lineages could artificially derive from the

differences in preservation through time. Therefore, we per-

formed a sensitivity analysis by simulating datasets under

constant rates and strongly biased preservation rates to test

whether such biases could result in the erroneous estimation

of shifts in speciation rates (see the electronic supplementary

material, text S1). These analyses show that the inferred early

bursts in speciation found for Amphicyonidae and Ursidae

are very unlikely to derive from preservation biases (elec-

tronic supplementary material, text S1 and figure S13).

Additionally, we found no evidence that preservation rate

differences between North America and Eurasia could bias

our results (electronic supplementary material, text S2).
oc.B
282:20151952
4. Discussion
We showed here that the faunal exchanges of carnivorans

between North America and Eurasia resulted in asymmetri-

cal macroevolutionary dynamics, with explosive radiations of

immigrant lineages when entering Eurasia and more constrained

dynamics after invading North America. We also found that at

the time of faunal exchange the dynamics of the immigrant

lineages show no sign of burst in diversification in their continent

of origin (figure 2). Although recent work [23] indicated that

diversification of carnivorans throughout the Neogene was glob-

ally stable, by looking at finer taxonomic and spatial scale (family

level and separate continents) and at a longer time span we

show diversity dynamics were more variable. We hypothesize

differences in the ecological settings between Eurasia and

North America can explain the macroevolutionary patterns

unclosed here.

The method we use to estimate speciation and extinction rates

cannot distinguish between in situ speciation and immigration

events. We emphasize, however, that from the perspective of

species accumulation at a new continent, the distinction between

speciation and immigration is not relevant to our argument, as

both contribute to the rapid accumulation of species at the incep-

tion of the colonization process. Moreover, the low proportion of

shared species between continents (see Methods), unless result-

ing from differences in taxonomic practices, suggests that at the

continental scale the diversification dynamics estimated here is

largely driven by in situ diversification.

The early bursts in diversification of Amphicyonidae,

Ursidae, Mustelidae and Canidae after invading Eurasia

are characterized by initially large speciation rates that decele-

rate through time, one of the key components of adaptive

radiations [35]. In general, our results agree with the palaeon-

tological interpretation of the earliest records assigned to

Amphicyonidae and Ursidae, suggesting both families origi-

nated in North America but invaded Eurasia soon after

[20,34,36]. Our estimates also suggest that this period is charac-

terized by high extinction rates in Eurasia. The high extinction

rates seen in this period might be owing to an unsuccess-

ful initial establishment of Amphicyonidae and Ursidae in

Eurasia. Speciation rates corroborate the notion that Amphi-

cyonidae expanded rapidly [18], especially after establishing

in Eurasia. Similarly, the earlier taxa recognized as true

ursids, grouped in the subfamily Amphicynodontinae seem

to have evolved in North America and reached Eurasia in the

Early Oligocene (approx. 34 Myr). The other two subfamilies

Hemicyoninae and Ursinae only radiated during the Late
Oligocene and Early Miocene (approx. 23 Myr) [33]. We ident-

ified an explosive radiation following the appearance of

Hemicyoninae bears, which are thought to have evolved in

Eurasia and reinvaded North America [20,36]. Phylogenetic

studies using mitochondrial genomes suggest an explosive

radiation of Ursinae close to the Miocene–Pliocene boundary

(approx. 5 Myr) [37]. Our analyses separating Eurasian and

North American taxa and including all Ursidae suggests this

radiation extends far back to the Early Miocene (approx.

23 Myr) with the rise of Hemicyoninae ursids in Eurasia.

The details of Mustelidae radiation are poorly resolved

owing to taxonomic uncertainty of the earliest occurrences

[24,26,27,38]. These earliest forms appear in North America

in the Early Miocene (approx. 23 Myr; [24]). Yet, depending

on the taxonomic scheme, the origin of Mustelidae may be

traced to Eurasia [27,39]. Irrespective of the taxonomic

scheme, we found an explosive radiation of Mustelidae in Eur-

asia that is not present in the North American record (electronic

supplementary material, figure S14). This agrees with previous

results based on a phylogeny of extant taxa, which suggest

mustelids preferentially diversified in Eurasia [26,40].

Amphicyonidae and Ursidae first appear in Eurasia around

the Eocene–Oligocene boundary (approx. 34 Myr), but only

radiate and accumulate species in Eurasia at approximately

the same time as the first occurrences of Mustelidae, close to

the boundary between the Oligocene and Miocene (approx.

23 Myr). At this time the diversity of the main Eurasian carni-

vores, the hyaenodontid Creodonta, a sister clade of Carnivora

was in steady decline [17] (electronic supplementary material,

figures S12 and S15). The demise of creodonts, may have

allowed immigrant lineages to flourish in face of the wealth

of ecological opportunities. Alternatively, it has been

suggested that amphicyonids and hemicyonine ursids could

have actively displaced creodonts [17].

History repeated itself close to the Miocene–Pliocene bound-

ary when Canidae invaded Eurasia. Although other Canidae

subfamilies were present in North America during the Cenozoic,

only Caninae established and radiated in Eurasia in the Late

Miocene (approx. 10–7 Myr) starting an explosive radiation

that decelerated over time. The rapid radiation of Eurasian Cani-

dae is also supported by phylogenetic studies [41]. Ecological

opportunity may also explain the burst in Canidae diversification

after invading Eurasia. Eurasia experienced massive losses of ter-

restrial mammals during the Late Miocene (approx. 11–5.3 Myr)

[17,42], most likely owning to the climatic events related to the

Messinian crisis, broadly characterized by an increase in aridity

that resulted in a decrease in forest cover and the expansion of

grasslands [43–45]. The fossil record suggests that most carni-

vore lineages declined in diversity during this period [17]. Our

results show these declines were mainly because of increased

extinction rates. Yet, this is the time when Canidae invade Eur-

asia and diversify rapidly with an early peak in speciation rates

followed by a decline phase. We hypothesize the radiation of

Canidae in Eurasia was also bolstered by the decline of other

carnivorans such as hyaenids [17]. The fact that in many

cases the taxa that replace those from declining lineages are

morphologically similar to the deceased [17] advocates the

role of ecological opportunity in shaping radiations.

Our estimates suggest that the radiation of Amphicyo-

nidae, Ursidae and Canidae are characterized by initially

high speciation and extinction rates. The invasion of Musteli-

dae in Eurasia does not result in high extinction rates, but if

we look at the dynamics of Musteloidea (electronic

http://rspb.royalsocietypublishing.org/
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supplementary material, figure S16) a similar pattern of high

initial extinction rate is present. Most work on evolutionary

radiations is based on neontological data and molecular

phylogenies [35], which tend to underestimate extinction

[46]. Our findings highlight that explosive radiations may

be a period of evolutionary turmoil where both speciation

and extinction rates are initially high.

The instances of migration from Eurasia to North America are

not followed by bursts in diversification as seen for immigrant

lineages going in the opposite direction. Palaeontologists gener-

ally agree that Procyonidae, Mephitidae, Barbourofelidae and

Felidae migrated from Eurasia to North America [16,20], as

reconstructed in our analysis. Our results indicate that the diver-

sification dynamics of these four lineages were similar in North

America and Eurasia, with roughly constant speciation rates.

Although some lineages, mainly ungulates, appear to

have undergone radiations in North America, the diversity of

mammals over the Cenozoic in North America seem to have

been relatively stable [47]. Yet, North America also had its own

explosive radiation of carnivorans. Canidae emerged in the

Eocene [48] and underwent an explosive radiation between 37

and 34 Myr that was similar to those of the lineages that immi-

grated into Eurasia. The rise of North American early canids

also happened while the hyaenodontid creodonts declined

and the cat-like nimravids had low diversity [16,17] (electronic

supplementary material, figures S11 and S15). Current evidence

suggests that the ‘double-wedge’ pattern involving creodonts

and carnivorans was more likely a case of incumbent replace-

ment rather than active displacement [49]. Assuming biotic

interactions such as competition and predation can indeed con-

strain evolutionary dynamics, the early rise of Canidae may have

constrained the radiation of other lineages that originated in

North America such as Amphicyonidae, Ursidae and Musteli-

dae. Although later forms of amphicyonids and ursids were

large-bodied, the earliest forms were smaller and morphologi-

cally similar to contemporaneous canids [34,36,50,51]. Thus,

constraints imposed by small-sized Canidae over those groups

are conceivable. Together, these early North American carnivor-

ans may have limited the diversification of immigrant lineages

from Eurasia through incumbency effects [13,52]. At a later

phase, the invasion of Eurasian lineages such as Felidae and to

a less extent Barbourofelidae might have contributed to increase

the extinction rate in North American canids [53].

Here we focused on lineages present in both North America

and Eurasia, but there are also lineages that, although diverse in

Eurasia never established in North America, namely Viverridae

and Hyaenidae. The reason is elusive, but it might be the case

that the incumbent North American carnivores (as well as

established immigrant lineages) not only limited diversifica-

tion, but also impeded some lineages to establish, so putative

invasions were never successful. Interestingly, although many

of the extinct hyaenids were bone-crackers, the only hyaenid

known to have reached North America is Chasmaporthetes, a

cursorial hunter [54]. The failure of hyaenids to thrive in

North America could be related to incumbency effects by the

bone-cracking borophagine canids, which were diverse

during the Miocene (23–5.3 Myr).

Our results suggest the establishment of Carnivora families

in Eurasia and the rise of Canidae in North America happened

through explosive radiations that coincide with a time when

other lineages of carnivores declined [17,49]. Yet, the two

main episodes of carnivorans radiation in Eurasia also occur

after two major climate change events [45,55]. The Eocene–
Oligocene boundary (approx. 34 Myr), which saw the

radiation of Canidae in North America and the establishment

of amphicyonids and ursids in Eurasia, marks the shift from

the ‘greenhouse’ to the ‘icehouse’ phase after the onset of the

Late Eocene global climate cooling (figure 2 [56–58]). By con-

trast, the radiation of Eurasian canids followed the global

warming and aridification episodes of the Miocene–Pliocene

boundary (approx. 7 Myr; figure 2 [59,60]). Climatic changes

may be responsible for triggering intercontinental dispersal

events [61]. Besides that, the vegetation changes associated

with these events [19,45,62] may have played a direct role

in the radiation of Eurasian immigrants by providing new

ecological opportunities for arriving lineages. The interplay

between migrations and climatic events was determinant for

the diversification of other terrestrial mammals in Eurasia

such as ungulates [42,62]. For instance, in Eurasia, taxa adapted

to open habitats such as equids and giraffids benefited from the

expansion of grasslands in the Late Miocene [42]. The radiation

of Caninae, which were well adapted to hunting in open

habitats in North America [63], might have been favoured by

such climatic and vegetation changes also in Eurasia [48].

The timing of radiations supports the role of ecological

opportunity in shaping the asymmetry in macroevolutionary

patterns between North America and Eurasia. However,

geographical differences between Eurasia and North America

may also have played a role in these diversification dynamics.

Eurasia occupies a larger area comprising different biomes.

Such differences in area were already in place at the time

Carnivora lineages diversified and might also have contribu-

ted to shape macroevolutionary patterns by generating more

opportunities for speciation events [64].

Here we focus on one component of adaptive radiations,

the rapid accumulation of species [35]. As more information

on morphological traits of extinct taxa is gathered we might

be able to test whether the explosive radiations we unveiled

here were accompanied by increased ecological diversity

[65]. Our findings indicate that the interplay between inter-

continental migrations and ecological opportunity played

an important role in the diversification of Carnivora, allowing

speciation bursts of invading lineages in Eurasia while limit-

ing the diversification of immigrants in North America. These

results reveal the long-term outcomes of biological invasions

and migrations and show explosive radiations might not only

be important in insular systems, but also shape diversity at a

continental scale.
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