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Interaction intimacy organizes
networks of antagonistic interactions
in different ways
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CEP: 05422-970, São Paulo, Brazil

Interaction intimacy, the degree of biological integration between interacting

individuals, shapes the ecology and evolution of species interactions.

A major question in ecology is whether interaction intimacy also shapes

the way interactions are organized within communities. We combined ana-

lyses of network structure and food web models to test the role of interaction

intimacy in determining patterns of antagonistic interactions, such as host–

parasite, predator–prey and plant–herbivore interactions. Networks

describing interactions with low intimacy were more connected, more

nested and less modular than high-intimacy networks. Moreover, the per-

formance of the models differed across networks with different levels of

intimacy. All models reproduced well low-intimacy networks, whereas the

more elaborate models were also capable of reproducing networks depicting

interactions with higher levels of intimacy. Our results indicate the key role

of interaction intimacy in organizing antagonisms, suggesting that greater

interaction intimacy might be associated with greater complexity in the

assembly rules shaping ecological networks.
1. Introduction
The ways in which species interactions are organized within biological systems

affect different aspects of ecological and evolutionary dynamics, from commu-

nity stability [1,2] to ecosystem functioning [3] and coevolution [4]. Ecologists

have made substantial efforts to describe the structure and understand the

assembly of ecological communities. Through these efforts, studies focusing

on the biological attributes shaping species interactions have distinguished

the key role of a few species traits in shaping patterns of interaction within eco-

logical networks. These traits include abundance [5,6], interaction type [7] and

interaction intimacy, the degree of biological integration among interacting

individuals of different species [8–10].

There is compelling evidence that the degree of interaction intimacy shapes

the ecology and evolution of species interactions [11]. High-interaction intimacy

is often associated with the propensity of an individual to interact with few indi-

viduals of other species during most of its lifetime [8,11]. For example, in

interactions established by symbiotic organisms, e.g. parasites and gall-forming

insects, each individual spends a substantial part of its life within or attached

to a single host. These interactions often involve a high degree of physiological

integration associated with trophic and physical dependence. High intimacy at

the individual level does not necessarily imply in high specialization at species

level, as is well known for some generalist parasites [12]. Nevertheless, owing

to the high level of biological integration between individual consumers and

their hosts, extreme patterns of specialization, such as monophagy [13], are a

common feature of some high-intimacy interactions. In contrast, interactions

with lower levels of intimacy, such as those between predators and prey [14],

often imply an absence of physiological integration or trophic and physical

dependence on any single individual interaction partner. For mutualisms, the

analysis of networks describing species interactions with different levels of
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interaction intimacy shows that these networks possess distinct

structural properties that might be a result of distinct ecological

and evolutionary dynamics [9,15]. Recent analyses also suggest

that interaction intimacy is particularly important in shaping

mutualisms, whereas the effects of interaction intimacy on

the network structure of antagonisms are less clear [10].

A fundamental question is how the underlying processes

moulding ecological networks differ between interactions vary-

ing in their degree of intimacy. Food web theory provides a

useful approach to explore the potential differences between

the assembly rules of antagonisms showing low- and high-

intimacy interactions. The development of models capable of

reproducing the structure of food webs [16] has yielded insights

into the formative processes underlying ecological interactions

[17–20]. Despite the simplicity of such models, the fit of a par-

ticular model to data suggests that it captures at least the most

essential mechanisms of network assembly. Such food web

models were originally developed to reproduce food webs that

describe interactions across different trophic levels. However,

recent work adapted these models to explore the mechanisms

shaping two-mode ecological networks, such as plant–animal

interactions [21,22].

This paper investigates the differences in the assembly rules

of ecological networks related to interaction intimacy. We

divided our analysis into two parts. First, we investigated the

role of interaction intimacy in shaping patterns of interaction

in antagonisms, such as parasitism, predation and variable

types of plant–herbivore interactions. We expected that highly

intimate interactions would have higher modularity due to

different factors associated with the phenotypic integration

among partners, including strong phylogenetic constraints

and coevolution favouring specialization [9,23]. In contrast,

high nestedness and low modularity are expected for inter-

actions with low intimacy, in which differences in abundance

[6] and body size [14] are hypothesized to play a key role.

Second, the approach based on food web models allowed us

to investigate whether the assembly of two-mode antagonistic

networks varies across distinct levels of interaction intimacy.

We tested the hypothesis that models with more complex

rules would be required to reproduce networks with high

levels of interaction intimacy.
2. Methods
2.1. The dataset and the characterization of

interaction intimacy
To test if antagonistic networks with varying levels of interaction

intimacy show different structural patterns related to different

assembly rules, we used 26 two-mode antagonistic networks

available online from the Interaction Web Database and compiled

from the literature (see the electronic supplementary material,

appendix A). This dataset encompass a broad range of antagon-

isms, including parasitism, predation, grazing and different

types of plant–herbivore interactions, with networks ranging

from small networks with no more than 16 species and 15 inter-

actions to large networks with more than 300 species and

700 interactions (see the electronic supplementary material,

appendix A). As in any dataset of ecological networks, certain

types of interactions are under-represented (e.g. few aquatic

antagonisms). However, we attempted to minimize the over-

representation of particular types of interactions, such as

parasite–host interactions, opting for a smaller dataset
encompassing representatives of a variety of antagonisms.

We did not use entire food webs because they often include differ-

ent types of interactions varying in their degree of intimacy [16].

Conversely in two-mode networks all links represent the same

kind of ecological interaction and thus are presumably subjected

to similar ecological and evolutionary processes [23]. Moreover,

we did not analyse networks in which a considerable proportion

of nodes (‘species’) are actually sets of species that are assumed

to be ecologically similar because two species sharing similar

resources or consumers may differ strongly in their degree of inti-

macy. Although the preponderance of plant–herbivore networks

in our dataset can be viewed as a potential bias, it is important

to note that insects represent much of the animal diversity

worldwide as well as most of the lifestyles found in nature [24].

Interaction intimacy can be viewed as a function of the degrees

of physiological integration, trophic and physical dependence of

interacting individuals of different species [8]. We opted to use a

conservative approach [10], classifying each interaction according

to three levels (low, intermediate and high) of interaction intimacy.

Interactions with low intimacy (n ¼ eight networks) are character-

ized by an absence of physiological integration and physical

dependence and by highly mobile consumers that are able to

feed upon many different individual prey throughout their life-

times. Examples include predation, grazing by mammalian

herbivores and interactions between plants and leaf-chewing

insects, such as grasshoppers. Interactions with intermediate inti-

macy (n ¼ eight networks) are characterized by an absence of

physiological integration and a certain degree of physical and

trophic dependence. Examples include the interactions between

plants and insect herbivores whose individuals feed mainly in

one or a few individual hosts for long periods of time, such as

the larvae of lepidopterans, coleopterans and dacine fruit flies.

Finally, interactions with high intimacy (n ¼ 10 networks) are

characterized by extreme physiological integration and the physical

and trophic dependence of consumers on single hosts for at least

part of the consumer’s life cycle, such as fish parasites, gall-forming

insects, leaf-mining insects and endophagous flower parasites.

2.2. Structural analysis of antagonistic networks
We used six metrics to characterize the structure of antagonistic

networks: (i) connectance, the proportion of all possible inter-

actions that are actually recorded; (ii) variance in the number of

interactions among consumers, s 2
c (iii) and among prey (hosts),

s 2
r ; (iv) nestedness; (v) modularity; and (vi) the number of mod-

ules. We used the metric NODF (nestedness metric based

on overlap and decreasing fill) to characterize nestedness [25]

and M to characterize modularity and compute the number of

modules in the network [26]. We used general linear models

(GLMs) to investigate if interaction intimacy (coded as an ordinal

explanatory variable) explains differences in each of the structural

metrics. Because species richness varies widely across networks

potentially affecting network structure, we used the total species

richness, S, as a covariate. Network metrics are often correlated,

for that reason, we performed two complementary analyses.

First, we used a principal component analysis (PCA) to test

whether the combined information on the metrics provides a

clear partition among interactions with different levels of intimacy

(electronic supplementary material, appendix B). Second, we used

null model analysis to determine if the differences in nestedness

and modularity are consistent after controlling for other network

properties (see the electronic supplementary material, appendix B).

2.3. Food web models and assembly rules of
antagonistic networks

To test whether networks with different degrees of intimacy are

better reproduced by different assembly rules, we compared the
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ability of three probabilistic food web models, namely the cascade

model [17], and the one-dimensional and two-dimensional prob-

abilistic niche models (PNMs), respectively [27], to predict

interactions within networks. Each model represents distinct can-

didate assembly rules with increasing degree of complexity that

may reproduce antagonistic networks.

The first model is a probabilistic version of the cascade model

[17]. In the original cascade model, each species is given a position

(n) along an axis that represents a feeding hierarchy, and a given

species i can only use species j as a resource if species j occupies

a lower rank in the feeding hierarchy, i.e. if ni . nj. Because

likelihood-based methods require that any interaction must have

a non-zero probability of occurrence, we adapted the cascade

model as a logit regression

log
Pðaij ¼ 1Þ
Pðaij ¼ 0Þ

� �
¼ aþ bfi;j; ð2:1Þ

in which aij is a cell in the matrix A that depicts species inter-

actions, a and b are parameters to be estimated, and fi,j equals

1 if ni . nj and 0 otherwise. Thus, the probability of an interaction

between consumer i and resource j given a particular parameter

set u ¼ fn1,n2. . . nS, a, bg is

Pði; jjuÞ ¼ eaþbfi;j

1þ eaþbfi;j
: ð2:2Þ

To maintain consistency with the original rules of the cascade

model, we constrain a to be ,1 and b . 1 such that the

probability of interaction is larger if ni . nj.

In the probabilistic niche model (PNM) [27,28], the consumer

may use a set of resources within a determined diet range. The

probability of an interaction between consumer i and resource j
is a continuous function:

Pði; jjuÞ ¼ v
YD
d¼1

exp �
nd;j � cd;i

rd;i=2

� �g� �
; ð2:3Þ

where nd,j represents the position in the niche dimension d for

resource j, cd,i represents the diet optimum of consumer i
for dimension d, rd,i is the diet range for consumer i within

dimension d, g controls the cutoff rate of the probability function

and y is the maximum probability that i consumes any given

prey, here set to 1 following Williams & Purves [27]. Because

species in two-mode networks will only be consumers or

resources, species positions (n) are defined only for the R species

that are used as resources, whereas diet positions and ranges

(c and r) are defined only for the C consumer species. Thus,

the parameter set can be defined as u ¼ fnd,1, nd,2, . . . nd,R, cd,1,

cd,2, . . . cd,C, rd,1, rd,2, . . . rd,C, gg. We restrict our analyses to

the one-dimensional (D ¼ 1) and two-dimensional (D ¼ 2)

niche models.

For each two-mode network represented by a matrix A, we

computed the probability of reproducing each link under each

model (cascade, one- and two-dimensional PNMs) for a given set

of parameters. Therefore, we define the log-likelihood for a given

parameter set as

LðujAÞ ¼
X

i

X
j

ln
Pði; jjuÞ if

1� Pði; jjuÞ if
aij ¼ 1
aij ¼ 0

� �
: ð2:4Þ

The maximum-likelihood parameter set is that which maxi-

mizes the likelihood. All models have a large number of

parameters. Therefore, to obtain maximum-likelihood estimates

(MLEs) is an optimization problem. We used simulated anneal-

ing [29], an optimization procedure that is less prone to

become trapped in suboptimal values, and the Latin hypercube,

a sampling technique that allows to explore large parameter

space [30]. We repeated the procedure 30 times for each combi-

nation of networks and models, starting from different points

in parameter space to improve the reliability of the estimates.
To compare model performance, we used the corrected

Akaike information criterion for finite sample sizes, AICc [31].

The model with the lowest relative value of AICc is that

showing the best fit to the data. We also computed the expected

fraction of correct links for each network under each model, an

additional measure of model performance [32]. The expected

number of correctly predicted links can be computed as

NcðAjuÞ ¼
P

i
P

j aijPði; jjuÞ: Therefore, the expected fraction of

links predicted correctly, fc, is obtained by dividing Nc by the

number of interactions in the actual network. This approach is

possible because MLEs for parameters imply that all models

would tend to generate networks with connectances similar to

the connectances of the real networks. We then tested whether

the fc differed between networks with high, intermediate and

low intimacy. To control for the possible effect of network size

on fc, we used a GLM in which total species richness and level

of interaction intimacy were factors. We performed the test

separately for each food web model.
3. Results
After controlling for species richness, all aspects of antagonistic

network structure but the variance in the number of interactions

per consumers (F2,23¼ 1.36, p¼ 0.28) varied across the gradient

of intimacy in predictable ways: low-interaction intimacy was

associated with higher connectance (F2,23¼ 5.74, p¼ 0.01),

higher nestedness (F2,23 ¼ 9.89, p¼ 0.0009), a higher variance

in the number of interactions per resource (F2,23¼ 17.36, p ,

0.0001), lower modularity (F2,23 ¼ 5.79, p¼ 0.01) and a smaller

number of modules (F2,23¼ 3.56, p¼ 0.04; figure 1). In all

cases, only networks with low intimacy differed signifi-

cantly from networks with intermediate and high intimacy

(figure 1). PCA analysis corroborates these results; by showing

low-intimacy interactions structurally differ from networks

formed by interactions with average and high levels of inti-

macy. Along of the same lines, null model analysis used to

evaluate nestedness and modularity significance led to similar

results, in which low intimacy is associated with significant

nestedness and high and intermediate intimacy with significant

modularity. For additional details on the analyses using the

GLM, PCA and null model analysis, see the electronic

supplementary material, appendix B.

The disparate structural patterns between antagonisms with

low intimacy and higher degrees of intimacy produced differ-

ences in the model fit for networks depicting interactions

with different levels of intimacy. The fraction of links correctly

predicted by the cascade model (figure 2) was significantly

higher for the low-intimacy networks (on average 76+ 21%)

than for the intermediate- (36+ 20%) and high-intimacy

networks (41+ 26%, F3,22 ¼ 6.27, p , 0.01). There were no sig-

nificant differences in the performance of the one-dimensional

PNM (low: 78+ 20%; intermediate: 70+ 23%; high: 78+ 19%;

F3,22 ¼ 0.39, p¼ 0.67) and the two-dimensional PNM (low:

81+ 20%; intermediate: 86+ 10%; high: 88+ 11%; F3,22 ¼

0.41, p ¼ 0.31) models across networks depicting interactions

with different levels of intimacy. The model selection procedure

favoured different models for networks with different degrees

of intimacy. The goodness of fit of the cascade model was the lar-

gest for six of the eight low-intimacy networks (figure 2). For

intermediate and high levels of intimacy, the performance of

the one-dimensional PNM was superior, showing the highest

fit to the data for six of the eight intermediate-intimacy networks

and six out of 10 of the high-intimacy networks (figure 2).
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The goodness of fit of the two-dimensional PNM was only

larger for the largest intermediate-intimacy network and for

one of the largest high-intimacy networks (figure 2). However,

for large networks the differences in the AICc between the

two-dimensional PNM and the other two models were gener-

ally smaller and the disparity in the fraction of links correctly

predicted was generally larger (figure 2).
4. Discussion
Our results showed clear differences between the structural

properties of networks depicting low-intimacy antagonistic

interactions and those of networks that depict antagonis-

tic interactions with intermediate and high levels of

intimacy. A long-lasting notion is that high modularity and

low nestedness characterize antagonistic ecological networks

[7,23]. Here, we show antagonisms can give rise to nested

networks when interactions have a low degree of intimacy.

At the community level, the presence of generalist lifestyles

in interactions with low intimacy produced not only lower

specialization (higher connectance), but also higher nested-

ness. In contrast, the higher-intimacy interactions are

associated with high specialization (lower connectance) and

also to higher modularity in antagonisms. Similar patterns

were reported for mutualisms, in which intimate mutualisms

are highly modular, whereas low-intimacy mutualisms are

often highly nested [9]. Taken together, these results suggest

the ecological and/or coevolutionary processes that shape

interaction patterns might be similar for systems with similar
levels of intimacy despite these systems representing antag-

onisms or mutualisms. Nestedness partially emerges due

to differences in population abundances among potential

partners [6], probably a key component shaping both mutu-

alisms and antagonisms with low intimacy. In addition, it

has been proposed that grazing and free-living mutualisms

might be much alike in the evolutionary processes shaping

specialization [11], whereas symbiotic mutualisms might be

similar to symbiotic antagonisms in the evolutionary pro-

cesses shaping their patterns of interaction [33]. Moreover,

our results suggest that interaction intimacy might have

strong implications for the stability of species interactions.

Nested patterns of resource use may have a destabilizing

effect on antagonisms, as suggested by numerical simulations

[7] and qualitative stability analysis [2], whereas the lower

connectance and higher modularity of intimate antagonisms

are associated with higher stability at the community level

[2,7]. Future studies should investigate if antagonisms with

low-interaction intimacy in fact tend to be more unstable to

ecological perturbations than intimate antagonisms. Overall,

our analyses using food web models contribute in three prin-

cipal ways to our understanding of the organization of

antagonisms involving multiple interacting species.

First, our results show that simple models are capable of

reproducing different types of antagonistic, two-mode net-

works. Therefore, large differences in network structure can

be reproduced by a set of simple models assuming that antag-

onistic interactions are determined by a few dimensions in

the niche space. Because two-mode networks are the build-

ing blocks of more complex ecological networks [34], a
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promising avenue for research is to explore how ecological net-

works formed by different types of interactions [10] can be

reproduced by merging assembly rules in different ways.

Second, model performance differed among two-mode net-

works with different levels of interaction intimacy. The

mechanisms underlying intimate interactions can be very com-

plex. Organisms, such as leaf-mining and gall-forming insects

and parasites need very specific host-recognition systems and

mechanisms to avoid the mechanical and chemical defences

of the hosts, in addition to specific morphology and physiology

that allow these organisms to live within their hosts in such a

close relationship [13,33,35]. Similar trends are observed in

interactions with intermediate levels of intimacy, such as

those formed by caterpillars and their host plants, in which

complex defence/counter defence complementarities play a

key role [36,37]. Thus, the assembly mechanisms of intimate

interactions are in general much more complex than the mech-

anisms structuring low-intimacy trophic interactions, such as

body size [14,32], feeding apparatus constraints [38] or phenolo-

gical matching and abundance effects [39]. These differences

were mirrored by differences in model performance. The

cascade model, the simplest in the set of models we tested in

this study, can reproduce a great percentage of the interactions

in low-intimacy networks, but it performs poorly in repro-

ducing networks depicting interactions with intermediate

and high levels of intimacy. These results generalize recent
findings [22] that the cascade model shows good performance

in reproducing low-intimacy mutualistic networks, pointing

out for general mechanisms shaping low-intimacy mutualisms

and antagonisms.

The cascade model tends to generate networks that are

more nested than modular [22] and was thus unable to repro-

duce the highly modular structure of networks of interactions

with higher intimacy. Conversely, the two versions of the

PNM were much more successful in reproducing the high-

intimacy networks. The addition of one dimension to the

niche space was only advantageous for the largest networks

analysed. This finding agrees with previous results for

whole food webs [27]. Therefore, the simple assumptions of

the niche model appear to successfully capture the essential

assembly rules of networks representing intimate inter-

actions. The versatility of the rules of the niche model

facilitates the reproduction of the patterns of interaction of

consumers with very narrow diet ranges, allowing each con-

sumer to explore a small portion of the feeding axis such that

niche overlap is minimal. These results corroborate the view

[40] that one-dimensional niche generalization may be a

useful simplification in models used to reproduce the struc-

ture of food webs. Although this property certainly does

not mean that only one characteristic of consumers and

resources is important in determining who interacts with

whom in a given locality [16], it does suggest that the core
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of the network of interactions is well represented by consid-

ering one dimension that can, in turn, represent a

combination of traits. The current challenge is to find an

approach allowing the different traits shaping high-intimacy

interactions to be combined in estimates of the parameters. A

next step in this analysis would be to parametrize these

minimal two-mode models with biological information on

species traits, as in the recently introduced body size-based

models for entire food webs [28,32].

Third, in addition to the insights that they yield into the

assembly processes of ecological communities, food web

models furnish the possibility of building ensembles of net-

works that share the same realistic structural backbone but

encompass the uncertainty of the occurrence of each pairwise

interaction. For this reason, food web models have been used

to build ensembles of food webs with a similar realistic struc-

ture. This approach allowed tests of the general properties of
the structure and dynamics of study systems [2,41]. In this

paper, we expanded the range of the types of ecological net-

works that can be reproduced by food web models. One key

problem that still requires a solution is the extent of the appli-

cability of the one-dimensional niche simplification results to

all species and all their interactions. By probing into each net-

work, future studies could provide an assessment of the

species whose interactions are well predicted by food web

models and the species for which food web models often

fail. This assessment will allow us to improve our under-

standing of the generality of simple assembly rules and the

complementary mechanisms generating the diversity of pat-

terns of interaction in nature.
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approach, and two anonymous reviewers for their comments and
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Blüthgen N. 2007 Specialization, constraints,
and conflicting interests in mutualistic
networks. Curr. Biol. 17, 341 – 346. (doi:10.1016/j.
cub.2006.12.0)

16. Dunne JA. 2006 The network structure of food
webs. In Ecological networks: linking structure to
dynamics in food webs (eds M Pascual, JA Dunne),
pp. 27 – 86. New York, NY: Oxford University Press.

17. Cohen JE. 1990 A stochastic-theory of community
food webs 0.6. Heterogeneous alternatives to the
cascade model. Theor. Popul. Biol. 37, 55 – 90.
(doi:10.1016/0040-5809(90)90027-S)

18. Williams RJ, Martinez ND. 2000 Simple rules yield
complex food webs. Nature 404, 180 – 183. (doi:10.
1038/35004572)

19. Allesina S, Alonso D, Pascual M. 2008 A general
model for food web structure. Science 320,
658 – 661. (doi:10.1126/science.1156269)

20. Stouffer DB. 2010 Scaling from individuals to
networks in food webs. Funct. Ecol. 24, 44 – 51.
(doi:10.1111/j.1365-2435.2009.01644.x)

21. Saavedra S, Reed-Tsochas F, Uzzi B. 2009 A simple
model of bipartite cooperation for ecological and
organizational networks. Nature 457, 463 – 466.
(doi:10.1038/nature07532)
22. Pires MM, Prado PI, Guimarães Jr PR. 2011 Do food
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