
The nested assembly of individual-resource networks
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Summary

1. Much of the current understanding of ecological systems is based on theory that does not

explicitly take into account individual variation within natural populations. However, individuals

may show substantial variation in resource use. This variation in turn may be translated into topo-

logical properties of networks that depict interactions among individuals and the food resources

they consume (individual-resource networks).

2. Different models derived from optimal diet theory (ODT) predict highly distinct patterns of

trophic interactions at the individual level that should translate into distinct network topologies.

As a consequence, individual-resource networks can be useful tools in revealing the incidence of

different patterns of resource use by individuals and suggesting their mechanistic basis.

3. In the present study, using data from several dietary studies, we assembled individual-resource

networks of 10 vertebrate species, previously reported to show interindividual diet variation, and

used a network-based approach to investigate their structure.

4. We found significant nestedness, but no modularity, in all empirical networks, indicating

that (i) these populations are composed of both opportunistic and selective individuals and (ii)

the diets of the latter are ordered as predictable subsets of the diets of the more opportunistic

individuals.

5. Nested patterns are a common feature of species networks, and our results extend its generality

to trophic interactions at the individual level. This pattern is consistent with a recently proposed

ODT model, in which individuals show similar rank preferences but differ in their acceptance rate

for alternative resources. Our findings therefore suggest a common mechanism underlying interin-

dividual variation in resource use in disparate taxa.

Key-words: complex networks, interindividual variation, modularity, nestedness, optimal diet

theory

Introduction

A central problem in ecology is to understand how animal

populations use resources in the environment. Even though it

has been known for a long time that many natural popu-

lations are not homogeneous regarding resource use (e.g.

Van Valen 1965), most of ecological theory, in particular

niche (Chase & Leibold 2003) and food web theories (Dunne

2006), did not effectively address diet variability among

individuals within populations. Such theories have provided

unequivocal insights into understanding ecological systems

(e.g. Pascual & Dunne 2006). However, a few ecological

models that do incorporate individual variation indicate that

it greatly impacts the stability and persistence of populations

and communities (e.g., Okuyama 2008; Lankau 2009).

Empirically, niche variation within populations has been

shown to be a widespread phenomenon (Bolnick et al. 2003),

but we still know little about its underlying ecological mecha-

nisms.*Correspondence author. E-mail: mathiasmpires@gmail.com
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Variation in resource use among individuals might be a

result of environmental differences in resource availability

across space and time. Alternatively, phenotypic differences

among individuals might lead to distinct individual niches,

generating intrapopulational variation in resource use

(Glasser 1982; Schindler, Hodgson & Kitchell 1997;

Robinson & Wilson 1998; Robinson 2000; Bolnick et al.

2003, 2007). Optimal diet theory (ODT) provides amechanis-

tic approach to understand variation in resource use. ODT

assumes that individuals make decisions on which food

resources should be consumed to maximize the rate of energy

income (Pulliam 1974). It also assumes that individual deci-

sions are a function of the energetic value of resources and

the search and handling times related to their capture, con-

sumption and digestion. Therefore, consumers are predicted

to rank resources according to energy yielded per unit time.

In this context, phenotypic variation among individuals that

affect search efficiency, handling times and digestive abilities

may lead to interindividual variation in rank preferences for

resources, causing interindividual diet variation (Bolnick

et al. 2003, 2007; Svanbäck & Bolnick 2005) and different

resource use patterns within populations.

In food webs, structural patterns of trophic interactions

among species have been studied using network approaches,

in which nodes represent species within a community and

links among them depict their interactions (Dunne 2006).

Similarly, patterns of resource use by individuals within a

population can be unravelled by studying individual-resource

networks (Araújo et al. 2008, 2010; Fig. 1). These networks

have two distinct sets of nodes: one representing individuals

and the other resources, and a link represents the consump-

tion of a given resource by an individual (Fig. 1). The differ-

ent patterns of resource use by individuals, in turn, result in

different topologies, so that the predictions of distinct ODT

models (Svanbäck & Bolnick 2005) can be directly associated

with distinct network architectures. Thus, depicting resource

use patterns of individuals as networks and describing their

topology enable the test of hypotheses on resource partition-

ing within populations. For instance, if individuals share the

preferred resource but differ in their preferences for alterna-

tive resources (competitive refuge model; Svanbäck & Bol-

nick 2005) or if individuals have different top-ranked

resources (distinct preferences model), we would expect that,

depending on resource availability, the individual-resource

network would exhibit modularity, i.e., semi-independent

subgroups of nodes densely linked (Fig. 1a,b, respectively).

Modularity would occur owing to different groups of indi-

viduals consuming different subsets of the available resources

(Araújo et al. 2008). Alternatively, the network would have a

nested structure (Araújo et al. 2010; Fig. 1c) if individuals

from different phenotypes had similar rank preferences but

differed in their acceptance rate for alternative resources in

response to the abundance of resources in the environment

(shared preferences model). In this scenario, when the pre-

ferred resources are scarce, the diets of themost selective indi-

viduals become a proper subset of the diet of the next more

opportunistic individuals, leading to nestedness (Fig. 1c).

Up to now, there are few studies (Araújo et al. 2008, 2010;

Dupont, Trøjelsgaard & Olesen 2010) that integrate network

theory and variation in resource use among individuals. The

(a)

(b)

(c)

Fig. 1. Hypothetical individual-resource networks depicting resource

use patterns based on Svanbäck & Bolnick’s (2005) models of opti-

mal diet (a–c). Circles represent individuals and diamonds resources;

different colours represent different phenotypes with different rank

preferences. A link represents the consumption of a given resource by

an individual. Networks on the left of each panel portray a scenario

where the preferred resource of each phenotype is abundant, and on

the right, the scenario when this resource become scarce. (a) The

‘competitive refuge’ model assumes phenotypes share the top-ranked

resource, but choose different alternative resources. As the preferred

resource becomes scarce, individuals shift to alternative resources,

reducing dietary overlap and increasing modularity. (b) The ‘distinct

preferences’ model assumes different phenotypes rank resources in a

different order. In the opposite direction of the competitive refuge

model, the ‘distinct preference model’ predicts that if the preferred

resources become scarce, individuals include novel resources in their

diets, thereby increasing dietary overlap. (c) The ‘shared preferences’

model assumes phenotypes have similar rank preferences but vary in

the rate atwhich theyaccept less-preferred resources, leading tonested

diets. Inallmodels,whenall resourcesare scarce,all individuals should

adopt an opportunistic strategy. For further details on each model

and its predictions, we refer readers to Svanbäck & Bolnick (2005).
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present study advances in this direction: we used a network-

based approach as an attempt to unravel the topological

complexity of trophic networks at the individual level and the

generality of resource use patterns. First, we depicted as net-

works the resource use by populations of 10 different verte-

brate species previously reported to show interindividual diet

variation (Table 1) and then investigated the topology of

these networks. The following questions were addressed: do

nonrandom patterns emerge in the interactions between the

individuals of a heterogeneous population and the food

resources they consume?Are similar patterns observed across

the distinct species analysed? Are these patterns predicted by

recently proposed ODT models for heterogeneous popula-

tions?

Materials andmethods

STUDY SYSTEMS

The dietary data used here come from previous work on intrapopula-

tion diet variation of 10 different Neotropical taxa: the didelphid

marsupial Micoureus paraguayanus (Pires 2010), eight frog species

from five different families (Araújo et al. 2007, 2009), and the lizard

Tropidurus hispidus (Costa 2008). These previous studies have shown

diet variation that was not related to age, sex or reproductive condi-

tion, so that we can employ the term interindividual diet variation.

Determining the persistence of diet variation over time is important

to distinguish between short-term stochastic effects and long-term

preferences (Bolnick et al. 2003). For M. paraguayanus, diet was

assessed by longitudinal sampling, and the diets of individuals were

shown to persist for at least 6 months (Pires 2010). For the Neotropi-

cal frogs, the cross-sectional dietary data were tested for temporal

consistency using stable isotope ratios, suggesting temporal consis-

tency in individual preferences at the scale of months (Araújo et al.

2007, 2009). The remaining population (Tropidurus hispidus) was not

evaluated for individuals’ dietary temporal consistency. Information

on each population is summarized in Table 1.

DIETARY ANALYSIS

The diet ofM. paraguayanuswas determined by the analysis of faeces

of live-trapped individuals. Individuals were live-trapped throughout

1 year so that we had several faecal samples for each individual. The

diet of frogs and lizards was determined by stomach content analysis.

Frogs and lizards were immediately killed upon collection, preserved

and dissected in the laboratory to obtain stomach contents. Faecal

and stomach contents were examined in the laboratory with a stereo-

scope. Food resources were mainly arthropods such as beetles, ants,

termites and spiders, consumed by individuals from all populations,

and fruits, consumed only byM. paraguayanus. Resource categories

were identified by comparison of arthropods remains or fruit seeds

with a reference collection or using taxonomic keys, allowing the

identification to the lowest taxonomic level possible (usually order

for arthropods and genus for plants). A food resource category was

recorded whenever it was detected in a sample. Matrices of resource

use by individuals containing the complete list of resources used by

these species are available in Appendix S1, Supporting information.

NETWORK STRUCTURE

The consumption of resources by individuals within each sampled

population was depicted as an individual-resource network consist-

ing of two sets of nodes (individuals and resource categories) and

links among them. It is important to stress that even though con-

sumer nodes refer to individuals, resource nodes represent a food

resource category as a whole. Thus, when we refer to individual level,

herein we are specifically talking about consumers because we do not

address individual variation within resource categories. This individ-

ual-resource network is defined as an incidence matrix R describing

trophic interactions between individuals (represented in rows) and

resources (in columns), where an element rij of the matrix is 1 if the

consumption of resource j by individual i was recorded and zero

otherwise (Harary 1969; Bascompte et al. 2003). We recognize that

an alternative approach is the use of weighted networks to describe

variation in the relative strength of trophic interactions (Berlow et al.

2004; Bascompte, Jordano & Olesen 2006). However, the predictions

of the ODT models we consider here are qualitative in nature and

thus more suited to binary, nonweighted networks. Therefore, to test

the predictions of the models, unweighted networks were used to

describe the use of food resources by individuals and investigate

structural patterns such as nestedness andmodularity.

NESTEDNESS

Nestedness is a property of networks in which the interactions of a

node is a subset of the interactions of the next more connected node

(Bascompte et al. 2003). The index NODF (Almeida-Neto et al.

2008) was used to compute the degree of nestedness of individual-

resource networks. This metric has conceptual advantages when

compared with other metrics and seems to be less prone to type-I sta-

tistical error, consistently rejecting nestedness for random networks

(Almeida-Neto et al. 2008). Moreover, it allows the calculation of

Table 1. Information about each population

References Common name Taxon Study area

Pires 2010 Tate’sWoolly mouse opossum Micoureus paraguayanus Cerrado, southeastern Brazil (São Paulo)

Costa 2008 Tropidurus lizard Tropidurus hispidus Restinga formation, northeastern Brazil (Maranhão)

Araújo et al. 2007 Brazilian savannah frogs Ischnocnema penaxavantinho

Leptodactylus sp.

L. fuscus

Proceratophrys sp.

Cerrado, southeastern Brazil (Minas Gerais)

Araújo et al. 2009 Brazilian savannah frogs Physalaemus cuvieri

Eupemphix nattereri

Chiasmocleis albopunctata

Elachistocleis bicolor

Cerrado, southeastern Brazil (Minas Gerais)
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nestedness independently among individuals and resources (see Al-

meida-Neto et al. 2008 for further details). For each network, total

nestedness was calculated. Nestedness was partitioned into two com-

ponents (Almeida-Neto et al. 2008), which we call individuals and

resource nestedness, and we investigated them separately. Because

the shared preferences model predicts nested patterns because of in-

terindividual variation in dietary selectivity, our focus is on the nest-

edness of individuals as opposed to resources. Furthermore,

nestedness of individuals allows us to control for nested patterns gen-

erated by factors associated with resources, such as differences in

abundances of different food items.NODFwill tend to 100 for highly

nested matrices and tend to zero when individuals show other non-

random patterns of resource use (Almeida-Neto et al. 2008). How-

ever, here we use N = NODF ⁄ 100 to facilitate comparisons among

measures. Because recent studies have reported differences in the

behaviour of different nestedness metrics (Ulrich, Almeida-Neto &

Gotelli 2009; Joppa et al. 2010), we also report in the Supporting

information, results using matrix temperature, T, a more traditional

measure of nestedness (Atmar & Patterson 1993). The program A-

NINHADO (Guimarães & Guimarães 2006) was used to calculate

NODF andT.

MODULARITY

Amodular or compartmented network consists of distinct subsets of

nodes, termed modules or compartments, in which nodes are more

densely connected to each other than to nodes in other modules

(Danon et al. 2005; Guimerà & Amaral 2005a,b). Although there are

many available methods for identifying modular structure in net-

works, we followed Danon et al. (2005) and Olesen et al. (2007) who

identified the simulated annealing algorithm (SA; Guimerà & Ama-

ral 2005a,b) as the most effective among methods for estimating the

degree of modularity in a network. We also refer readers to Olesen

et al. (2007) for a brief summary on the advantages and disadvan-

tages of different methods to assess modularity in complex networks.

The SA is a stochastic optimization technique that, combined with a

module identification algorithm, allows partitioning of the network

into modules that yield the largest degree of modularity (Guimerà &

Amaral 2005a,b). For each partition of a given network, an index of

modularityM is computed:

M ¼
XNM

s¼1

ls

L
� ds

2L

� �2
" #

eqn 1

where NM is the number of modules in the network, ls is the number

of interactions between all nodes (individuals and resources) within

module s, L is the number of interactions in the network and ds is the

sum of degrees of all nodes in s. The SA algorithm is then used to

obtain the best determination of the modules of a network by direct

maximizationofM (Guimerà&Amaral 2005a,b).M equals 0 if nodes

are placed at random intomodules or if all nodes are in the same clus-

ter and approaches 1 if modules have well-delimited boundaries, i.e.

few among-modules links. NoteM did not take into account the fact,

the network is bipartite, i.e. networks inwhich interactions only occur

between nodes in different sets (individuals and resources). Neverthe-

less, our null models keep the bipartivity of real networks, controlling

for any potential effect of bipartite structure onmodularity.

NULL MODEL

A certain degree of nestedness or modularity may be generated by

stochastic processes (Guimerà, Sales-Pardo &Amaral 2004; Vázquez

& Aizen 2004; Ulrich, Almeida-Neto & Gotelli 2009) such as

sampling biases. In studies with continuous sampling, structure may

be affected by reduced sampling effort, because the diets of individu-

als with limited information might appear as subsets of the diets of

the individuals that were capturedmany times, increasing nestedness.

In studies with cross-sectional sampling, such as gut content analysis,

if individuals are captured at different points in their activity period,

they may differ in the time spent foraging and thus both the degree of

nestedness and modularity might be affected. In addition, as

resources are not evenly distributed, structure may arise from indi-

viduals randomly sampling a shared distribution of resources. Thus,

to verify the significance of those patterns, the empirical values of N

andMwere tested against null distributions of these values.

We generated theoretical individual-resource networks in which

the probability that an individual i feeds on a resource j is

pðrij ¼ 1Þ ¼ 1

2

ki
A
þ kj

B

� �
eqn 2

in which ki is the number of resource types consumed by individual i

and kj is the number of individuals that consume resource type j, A is

the number of resources and B is the number of individuals sampled.

This model is identical to the one used by Bascompte et al. (2003) for

mutualistic bipartite species networks. This model was chosen

because it has a low rate of type-I error when compared to uncon-

strained null models (Ulrich, Almeida-Neto & Gotelli 2009), and by

preserving differences in the number of interactions among individu-

als and among resources found in the empirical network, the model

accounts for random processes that might generate structure as high-

lighted earlier. There are more constrained models, which fix both

columns and ⁄ or rows totals from the original incidence matrix and

randomizes interactions. However, these models greatly increase the

tendency of type-II error (Ulrich & Gotelli 2007; Ulrich, Almeida-

Neto &Gotelli 2009; Joppa et al. 2010). Moreover, observed individ-

ual diets are intrinsically probabilistic, because they represent an esti-

mate of actual individual diet. Thus, there is no biological realism in

assuming diets as fixed.

CalculatingN andM for each resampled population (we used 1000

iterations for each network), the null hypotheses can be rejected if the

observed values are >95% of the theoretical values. To allow cross-

network comparisons, we used the relative nestedness (Bascompte

et al. 2003), and analogously the relative modularity, which correct

for variation in the size of the networks, i.e. the number of sampled

individuals, types of resources and trophic interactions. Relative

nestedness is defined as N� ¼ ðN�NRÞ=NR, where N is the nested-

ness of the actual matrix andNR is the average nestedness of random

replicates generated from the null model analysis. Similarly, relative

modularity can be defined asM� ¼ ðM�MRÞ=MR. The MATLAB

script for generating null model networks is available under request.

Results

Individual-resource networks vary from small-sized net-

works containing as few as 20 individuals and six resource

categories to large networks containing 115 individuals and

almost 30 resource categories (sampled individuals =

67Æ8 ± 33Æ4, resource categories = 18Æ5 ± 8Æ9, mean ±

SD, n = 10). Along the same lines, network connectance,

the proportion of potential links that actually occur, also var-

ied across networks (C ¼ 0 � 18� 0 � 08, range: 0Æ10–0Æ32).
Yet, all empirical networks (Fig. 2) were significantly

more nested (N ¼ 0 � 42� 0 � 14, mean ± SD) than their

4 M.M. Pires et al.
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randomized counterparts (NR ¼ 0 � 25� 0 � 08; P < 0Æ05 in

all networks). Using thematrix temperaturemetric gave simi-

lar results (Table S1, Supporting information). The degree of

nestedness was often >60% larger in empirical networks

than in their randomized versions (N� ¼ 0 � 64� 0 � 24).
Nestedness in empirical individual-resource networks may be

generated both by the resource use pattern of individuals and

by the variation in resource availability across the environ-

ment. Resources were indeed more nested than expected by

chance for most of the empirical networks (six of 10 net-

works, P < 0Æ05; N ¼ 0 � 30� 0 � 13; NR ¼ 0 � 23� 0 � 08).
Nevertheless, the nestedness of individuals was higher in all

the networks than in their randomized counterparts

(P < 0Æ05; N ¼ 0 � 43� 0 � 15; NR ¼ 0 � 26� 0 � 09), in

agreement with the predicted pattern for the shared prefer-

ences model. The average relative nestedness for individuals

(0Æ68 ± 0Æ27) was three times higher than that for resources

(0Æ26 ± 0Æ20). Therefore, most of the nestedness observed in

the empirical networks was a result of the nested use of

resources by individuals.

All empirical networks showed low degree of modularity

(M ¼ 0 � 33� 0 � 08). The observed values of modularity for

individual-resource networks were not significantly higher

than expected by similar random networks (P > 0Æ10 for

all networks). In fact, the degree of modularity was, on

average, higher for randomly generated networks than for

real networks (MR ¼ 0 � 34� 0 � 01; M� ¼ �0 � 05� 0 � 03).
Therefore, the individual-resource networks showed no evi-

dence of patterns associated with the competitive refuge

and distinct preferences models. Networks with higher con-

nectance were also more nested (F8,1 = 20Æ82, r2 = 0Æ68,
P < 0Æ01) but were less modular (F8,1 = 7Æ04, r2 = 0Æ40,
P < 0Æ05). However, the number of nodes had no effect in

the degree of nestedness or modularity (nestedness:

F8,1 = 2Æ02, r2 = 0Æ10, P = 0Æ20; modularity: F8,1 = 0Æ06,
r2 = 0Æ01, P = 0Æ8). Table S1, Supporting information

contains information about the number of nodes, connec-

tance, the degrees of nestedness and relative nestedness and

the degrees of modularity and relative modularity for each

network.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2. Individual-resource networks. Links represent the consumption of a resource (diamonds) by each individual (circles). (a)Micoureus para-

guayanus; (b) Tropidurus hispidus; (c) Leptodactylus sp.; (d)Chiasmocleis albopunctata; (e) Physalaemus cuvieri; (f) Ischnocnema penaxavantinho;

(g) L. fuscus; (h) Eupemphix nattereri; (i) Elachistocleis bicolor; (j) Proceratophrys sp. Networks were drawn in Pajek (http://vlado.fmf.uni-lj.si/

pub/networks/pajek/).
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Discussion

Despite the dissimilarity of the networks describing the anal-

ysed populations, in which the number of sampled individu-

als and trophic interactions among individuals and resources

differed, our results show a remarkably invariant pattern

across the different species. All networks were more nested

than expected by chance alone, and the relative degree of

nestedness was considerably large for most of them

(Table S1). This high degree of nestedness in individual-

resource networks means that the populations studied are

composed of both opportunistic and selective individuals

and that the diets of selective individuals are ordered, predict-

able subsets of the diets of the opportunists (Araújo et al.

2010). Consistent with these results, we found low degrees of

modularity, indicating that, even though all populations

show interindividual diet variation, these networks are not

organized into clearly delimited modules corresponding to

groups of individuals consuming different subsets of the

available resources (e.g., Araújo et al. 2008). Highly con-

nected networks were more nested and less modular. This

relationship is expected because the nested structure itself

implies a certain degree of overlap that blurs boundaries of

potential modules (Olesen et al. 2007). In individual-resource

networks, high connectance ultimately reflects larger dietary

overlap and thus a larger tendency towards nestedness than

modularity, even though both patterns are not incompatible

(e.g., Lewinsohn et al. 2006; Olesen et al. 2007; Ulrich &

Gotelli 2007; Fortuna et al. 2009, 2010). Nevertheless, the

degree of nestedness observed in individual-resource net-

works analysed was higher than expected for networks gener-

ated using a null model that controls for connectivity

patterns. This raises the question as to what is the mechanis-

tic basis of the structure observed in individual-resource net-

works.

A nested pattern is predicted by ODT (Fig. 1c) if individu-

als have similar rank preferences but differ in their willing-

ness to include lower-ranked resources in their diets (the

shared preferences model – Svanbäck & Bolnick 2005). Even

though we have known for decades that ODT predicts that

individuals take the rate of energy income into consideration

when ranking food items (Stephens & Krebs 1986), the

shared preferences model introduces an additional factor: the

variation among individuals in the threshold for adding alter-

native resources in their diets. According to this model, for a

given set of available resources, the population would be

composed of some individuals who behave as opportunists,

while others would still behave more selectively consuming

only top-ranked resources. Because most individuals shared

similar rank preferences, novel resources should be added in

a predictable order, causing nestedness (Araújo et al. 2010).

The observed pattern can also be interpreted in the light of

ideal free distribution theory (IFD, Fretwell & Lucas 1970).

IFD predicts some individuals will disperse to a lower-quality

patch as the density in the higher-quality patch increases, so

that at equilibrium the different patches all have the same

pay-off. Similarly, the specialization of all individuals on the

top-ranked resource would lead to resource depletion,

favouring the inclusion of lower quality resources (Estes

et al. 2003). If we assume that individuals differ in competi-

tive ability, so that superior competitors are disproportion-

ately more common in the higher-quality patch (Houston &

McNamara 1988), such an IFD model applied to resource

use would lead to a nested pattern. According to this adapted

model, superior competitors would monopolize the best

resource, whereas out-competed individuals would feed on

top resources but also add lower quality resources to their

diets. This formulation shares many commonalities with the

shared preference models such as density-dependent effects

and the assumption of interindividual variation in the accep-

tance of resources.

The fact that the observed patterns can be explained by

two different, albeit interrelated, theoretical frameworks

illustrates the difficulty in directly linking observational

empirical data to their underlying mechanisms. However, the

fact that nestedness was observed in 10 different species

belonging to taxonomic groups as disparate as marsupials,

and frogs suggest a general, shared underlying mechanism.

Future observational and experimental studies would be of

great help in determining the mechanistic basis of nestedness

in these and other species. An equally promising field for

future research is to address related questions addressed here

using quantitative approaches. As stated before, we used

qualitative networks because we focused in the qualitative

predictions of the ODT models. Future studies should

develop the approach introduced here, creating quantitative

predictions of ODTmodels in terms of topological aspects of

weighted networks (e.g., Barthélemy et al. 2005), and allow-

ing us to test whether the generality in the patterns of inter-

action observed here holds true when addressing the

quantitative variation in resource use within populations.

Our results reinforce that network-based approaches, as

commonly used at the species level in ecology (Pimm, Lawton

& Cohen 1991; Bascompte et al. 2003; Dunne 2006), are use-

ful when applied at the individual level, where they can

uncover patterns of resource use within populations (Araújo

et al. 2008, 2010). Nestedness is a widespread pattern

reported for several systems in the context of species interac-

tions (Valtonen et al. 2001; Bascompte et al. 2003; Lewin-

sohn et al. 2006; Guimarães et al. 2006, 2007; Burns 2007;

Ollerton et al. 2007). Here, we expand the generality of the

nested pattern to trophic interactions at the individual level.

The nested pattern uncovered here has important implica-

tions for ecological studies at different scales. A potential

implication of nestedness in resource use is that if resources

are in limited supply, competitive interactions among indi-

viduals will be highly asymmetric. This asymmetry in turn

might affect the ecological and evolutionary dynamics of

populations in ways that still need to be determined (Araújo

et al. 2010). Future studies should explore how general is

nestedness across other animal species and if and how nested-

ness is moulding competitive interactions within populations.

Finally, our work describes nonrandom patterns of inter-

action in networks at the individual level, which might have
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substantial implications to the assembly, stability and

dynamics of ecological interactions at the community level.

An open question is whether the implications of food web

structure to ecological dynamics (Dunne, Williams & Marti-

nez 2002; Williams et al. 2002) will be affected if we consider

the nested structure of individual level networks.
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Araújo, M.S., dos Reis, S.F., Giaretta, A.A., Machado, G. & Bolnick, D.I.

(2007) Intrapopulation diet variation in four frogs (Leptodactylidae) of the

Brazilian Savannah.Copeia, 2007, 855–865.
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Araújo,M.S.,Martins, E.G., Cruz, L.D., Fernandes, F.R., Linhares, A.X., dos
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Guimarães, P.R. Jr, Sazima, C., dos Reis, S.F. & Sazima, I. (2007) The nested

structure of marine cleaning symbiosis: is it like flowers and bees? Biology

Letters, 3, 51–54.
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Pires, M.M. (2010) Nicho trófico de Micoureus paraguayanus (Didelphimor-

phia: Didelphidae): variação intrapopulacional e interindividual. MSc thesis,

Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.

Pulliam, H.R. (1974) On the theory of optimal diets. The American Naturalist,

108, 59–74.

Robinson, B.W. (2000) Trade-offs in habitat-specific foraging efficiency and

the nascent adaptive divergence of sticklebacks in lakes. Behaviour, 137,

865–888.

Robinson, B.W. &Wilson, D.S. (1998) Optimal foraging, specialization, and a

solution to Liem’s paradox.The AmericanNaturalist, 151, 223–235.

Nestedness in individual-resource networks 7

� 2011 TheAuthors. Journal ofAnimal Ecology� 2011 British Ecological Society, Journal of Animal Ecology



Schindler, D.E., Hodgson, J.R. & Kitchell, J.F. (1997) Density-dependent

changes in individual foraging specialization of largemouth bass. Oecologia,

110, 592–600.

Stephens, D.W. & Krebs, J.R. (1986) Foraging Theory. Princeton University

Press, Princeton,New Jersey, USA.
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