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Abstract
Clinical and neurobiological findings have reported the involvement of endocannabinoid signaling in the pathophysiology 
of schizophrenia. This system modulates dopaminergic and glutamatergic neurotransmission that is associated with positive, 
negative, and cognitive symptoms of schizophrenia. Despite neurotransmitter impairments, increasing evidence points to a 
role of glial cells in schizophrenia pathobiology. Glial cells encompass three main groups: oligodendrocytes, microglia, and 
astrocytes. These cells promote several neurobiological functions, such as myelination of axons, metabolic and structural 
support, and immune response in the central nervous system. Impairments in glial cells lead to disruptions in communication 
and in the homeostasis of neurons that play role in pathobiology of disorders such as schizophrenia. Therefore, data suggest 
that glial cells may be a potential pharmacological tool to treat schizophrenia and other brain disorders. In this regard, glial 
cells express cannabinoid receptors and synthesize endocannabinoids, and cannabinoid drugs affect some functions of these 
cells that can be implicated in schizophrenia pathobiology. Thus, the aim of this review is to provide data about the glial 
changes observed in schizophrenia, and how cannabinoids could modulate these alterations.
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Abbreviations
∆9-THC  Delta-9-tetrahydrocannabinol
2-AG  2-Arachidonoylglycerol
AEA  Anandamide
CB1  Type 1 cannabinoid receptor
CB2  Type 2 cannabinoid receptor
CNR1  Cannabinoid receptor type-1 gene
CNR2  Cannabinoid receptor type-2 gene
COX  Cyclooxygenase
DAGLα  Diacylglycerol lipase alpha
DAGLβ  Diacylglycerol lipase beta
DISC-1  Disrupted in schizophrenia-1
FAAH  Fatty acid amide hydrolase
GFAP  Glial fibrillary acid protein

GLAST  Glutamate aspartate transporter
GLT-1  Astrocytic glutamate transporter-1
GPR55  G protein-coupled receptor 55
IL-1  Interleukin 1
IL-6  Interleukin 6
KO  Knockout
LPS  Lipopolysaccharide
MAGL  Monoacylglycerol lipase
NAPE  N-Acyl-phosphatidylethanolamine-phospholi-

pase
NMDA  N-Methyl-d-aspartate
OPCs  Oligodendrocyte precursor cells
PPARγ  Peroxisome proliferator-activated receptor
TNF-α  Tumor necrosis factor alpha
TRPV1  Transient receptor potential vanilloid 1

Schizophrenia

Schizophrenia is a chronic mental disorder characterized 
by three main classes of symptoms: positive, negative, and 
cognitive. Clinical manifestation of schizophrenia usu-
ally occurs between late adolescence and early adulthood, 
which contributes to a high cost for public health care. 
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Schizophrenia is understood to be caused by genetic and 
environmental interactions that impair neurodevelopment 
[1]. Although the introduction of antipsychotics in the 1950s 
has had a great impact on the treatment of schizophrenia, 
these drugs have limited efficacy on the negative and cogni-
tive symptoms, and present several side effects. Therefore, 
studies are required to better understand the pathophysiol-
ogy of schizophrenia, which could lead to the development 
of new therapeutic compounds or the improvement of the 
current drugs.

The pathophysiology of schizophrenia has not yet been 
fully elucidated, but evidence suggest a dysfunction of 
dopaminergic neurotransmission [2] and a hypofunction of 
N-methyl-d-aspartate (NMDA)-type glutamate receptors 
[3]. Moreover, studies reported that glial cells [4–7] can be 
involved in the pathobiology of schizophrenia. Finally, endo-
cannabinoid signaling modulates neurotransmissions [8] and 
may be involved in the maintenance of physiological condi-
tions in the central nervous system, through the regulation 
of glial cells [9, 10]. In this regard, a targeted modulation of 
the endocannabinoid system may contribute to understand 

the glial mechanisms and cannabinoid function that underlie 
the pathophysiology of schizophrenia.

Endocannabinoid system

Although Cannabis sativa is widely recognized as a rec-
reational drug since ancient times, its compounds present 
several pharmacological uses in psychiatric disorders [11]. 
Interest in understanding the mechanisms of delta-9-tetrahy-
drocannabinol (∆9-THC) in the brain led to the discovery of 
cannabinoid receptors [12]. Thereafter, endogenous ligands 
for cannabinoid receptors were identified [13]. Thus, the 
endocannabinoid system comprises the endocannabinoids 
(Fig. 1), such as anandamide (AEA) and 2-arachidonoyl-
glycerol (2-AG); the enzymes fatty acid amide hydrolase 
(FAAH) and monoacylglycerol lipase (MAGL), responsible 
for degradation; the synthesis enzymes N-acyl-phosphati-
dylethanolamine-phospholipase (NAPE) and diacylglycerol 
lipase alpha (DAGLα) and beta (DAGLβ); as well the type 1 
(CB1) and 2 (CB2) cannabinoid receptors [13–16].

Fig. 1  Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are 
synthesized from arachidonic acid (AA) on post-synaptic neuron or 
glia cells. Once released by post-synaptic neurons, endocannabinoids 
act in retrograde signaling at presynaptic neuron. Cannabinoid recep-
tors (CB1 and CB2) are  Gi/0 protein coupled, except in astrocytes that 

it is coupled to  Gq/11. Intracellular mechanism cannabinoid receptors 
comprise inhibition of adenylate cyclase, increasing  K+ currents, and 
inhibition of  Ca2+ channels, that decrease neurotransmitter release. 
Exogenous cannabinoids (e.g., compounds of Cannabis sativa) can 
activate cannabinoid receptor in neurons or glial cells
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It was originally believed that CB1 is widely expressed 
in the central nervous system [12], while CB2 is abundant 
in peripheral immune cells [17]. However, CB2 expres-
sion has also been found in the brain [18, 19]. Additionally, 
other candidates for endocannabinoid binding, such as G 
protein-coupled receptor 55 (GPR55) and transient recep-
tor potential vanilloid 1 (TRPV1) receptors [20–22] have 
been described. Cannabinoid receptors are localized mainly 
at presynaptic membranes [15], where they are responsi-
ble for modulating neurotransmitter release. The activation 
of cannabinoid receptors at presynaptic neurons results in 
decreased neurotransmitter release [23–25]. Despite the 
primarily presynaptic localization, cannabinoid receptors 
are still expressed on the membranes of post-synaptic neu-
rons [15, 26]. The cannabinoid-induced psychotomimetic 
effects are mediated mainly through CB1 activation in neu-
rons. Moreover, cannabinoid receptor expression has been 
shown in mitochondria [27, 28] and glial cells [9], but their 
functions are not totally understood. Thus, findings suggest 
that the effects of cannabinoids on glial cells may provide a 
new approach to treat certain brain disorders [29].

Schizophrenia and endocannabinoid system

The first evidence of the endocannabinoid system being 
involved in the pathophysiology of schizophrenia was based 
on high prevalence of Cannabis sativa abuse [30, 31]. Stud-
ies showed that cannabis abuse worsens the symptoms of 
schizophrenia patients [32, 33], and increases the risk for 
schizophrenia development in vulnerable individuals [34]. 
Moreover, studies have shown increased AEA levels in the 
cerebrospinal fluid [35, 36] and plasma [37, 38] of schiz-
ophrenia patients. Additionally, regulation in CB1 recep-
tor density in some brain areas of schizophrenia patients 
was observed [39–45]. In this regard, a pre-clinical study 
reported that increased CB1 levels in some brain areas by 
antipsychotics could be prevented by high-fat diet [46], sug-
gesting a confounding factor for changes observed in CB1 
levels in schizophrenia.

Genetic studies also support the cannabinoid hypothesis 
of schizophrenia. Cannabinoid receptor type-1 gene (CNR1) 
polymorphism has been associated with schizophrenia and 
hebephrenic schizophrenia [47–50]. In addition, CNR2 
polymorphism has also been observed in schizophrenia 
[51]. Together, these studies have shown that CNR1 and 
CNR2 polymorphisms are involved in susceptibility of 
schizophrenia, symptom outcomes, and treatment response. 
Interestingly, Ho et al. [52] found the association of CNR1 
polymorphism with variations in white matter volume in 
schizophrenia.

Finally, investigations have pointed to cannabinoid drugs 
as potential tools to treat schizophrenia. Studies have shown 

that CB1 agonists lead to schizophrenia-like behaviors 
[53–57], while CB1 antagonists may have antipsychotic 
properties [58, 59] in animal models. The antipsychotic 
effects of AEA have been also reported [53]. Additional 
evidence has reinforced the antipsychotic properties of can-
nabidiol in animal models of schizophrenia [60]. Study has 
shown preventive effects of cannabidiol in schizophrenia 
[61].

However, limited clinical studies have reported the effects 
of cannabinoid drugs. Cannabidiol seems to be the most 
promising cannabinoid in schizophrenia treatment. The 
first evidence of the antipsychotic effects of cannabidiol 
came from a case study [62]. Leweke and colleagues [63] 
then confirmed the antipsychotic properties of cannabidiol. 
Recently, a randomized, controlled trial reported the antipsy-
chotic effects of cannabidiol in schizophrenia patients [64].

Therefore, consistent findings have shown the involve-
ment of this system in the pathobiology of schizophrenia. 
However, fewer studies have investigated the implications 
of cannabinoids on glial cells in schizophrenia, which are 
further described in the following section.

Glial cells and schizophrenia

Recent findings suggest the importance of glial cell func-
tions in schizophrenia. Several neurobiological functions 
have been attributed to these cells. Oligodendrocytes are 
responsible for myelinating axons, ensuring efficient neu-
ronal impulse conduction; microglia cells are involved with 
the immune response in the central nervous system; and 
astrocytes provide metabolic and structural support for neu-
rons and play a role in some neuronal signaling. Increasing 
evidence has shown abnormalities in all three types of glial 
cells in schizophrenia.

Glial cells express cannabinoid receptors and synthesize 
endocannabinoids, and effects of cannabinoid drugs on these 
cells have been demonstrated [29] (Fig. 1). As such, inter-
actions between the endocannabinoid system and glia may 
point to evidence for understanding schizophrenia pathobi-
ology and contribute to the development of pharmacologi-
cal tools. Some dysfunction observed in glial cells may be 
treated by cannabinoids, alleviating white matter deficits, 
damage caused by neuroinflammatory or glutamate exci-
totoxicity, and other pathological pathways observed in 
schizophrenia.

Oligodendrocytes, schizophrenia, and cannabinoids

Magnetic resonance imaging studies showed decrease of 
white matter in schizophrenia patients [65–67]. Other imag-
ing studies using white matter fractional anisotropy, a meas-
ure of integrity of axons and myelin, demonstrated disrupted 
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white matter in schizophrenia, suggesting a possible reduced 
myelin [68, 69]. Interestingly, these data reported that the 
disruption of white matter was correlated with the severity 
of schizophrenia symptoms. Following this, white matter 
deficits can lead to a disconnect between brain regions, con-
tributing to schizophrenia pathobiology [70]. Particularly, 
oligodendrocytes play a role in this context, as these glial 
cells are the most abundant cell type in white matter.

Postmortem investigations have shown a decrease in den-
sity and morphological disturbances in oligodendrocyte cells 
of schizophrenia patients compared to healthy individuals, 
indicating alterations in metabolism and energy [70–73]. 
Moreover, proteomic investigations have reported differen-
tial expression of myelin- and oligodendrocyte-associated 
proteins in schizophrenia [70]. Study using cuprizone, a 
model of demyelinating process, reported that quetiapine 
attenuated the schizophrenia-like behaviors and protected 
myelin integrity [74]. In addition, it was shown in human 
oligodendrocyte cell culture that MK-801 treatment pro-
moted alterations in proteins involved in energy metabolism, 
and clozapine reversed some of these alterations [75].

Another interesting point is the role of oligodendrogen-
esis in schizophrenia. This process takes place during brain 
development and following myelin injuries. In adult brains, 
oligodendrocyte precursor cells (OPCs) can migrate to dam-
aged areas, differentiate into mature oligodendrocytes, and 
remyelinate the local injury. As aforementioned, white mat-
ter deficit seems to be involved in schizophrenia pathobiol-
ogy, and oligodendrocytes play a crucial role in this process. 
Study showed that antipsychotic drugs can improve myelin 
integrity in drug-responder schizophrenia patients [76]. 
However, no data reported the specific effects of antipsy-
chotics on OPCs. Conversely, animal and in vitro studies 
have been performed in this field. In vitro studies showed 
that antipsychotics promote changes in the migration, prolif-
eration, and differentiation of OPCs [77–79]. Another study 
have reported effects of antipsychotics on glycolysis process 
in oligodendrocytes [80]. Thus, the modulation of OPCs and 
mature oligodendrocytes by drugs can comprise an interest-
ing approach to investigate schizophrenia pathobiological 
and treatment.

Study demonstrated CB1 receptor expression in oli-
godendrocytes from postnatal and adult rats, as well as 
in oligodendrocyte culture [81]. This same study also 
reported that CB1/CB2 agonists WIN55,212-2 and HU211 
protected OPCs from apoptosis induced by deprivation 
of trophic support. Furthermore, another study found 
an oligodendrogliogenetic effect of WIN55,212-2 in an 
animal model of multiple sclerosis [82], which shares 
some degenerative process with schizophrenia. Another 
group using a model of cerebral ischemia reported that 
WIN55,212-2 induced OPCs’ differentiation and remyeli-
nation through the activation of CB1 [83]. Concordantly, 

differentiation of OPCs by WIN55,212-2 was demon-
strated by in vitro studies [84, 85]. Taken together, these 
studies provide evidence that cannabinoid agonists can 
modulate OPCs’ differentiation, and remyelination process 
[69]. Although these studies do not represent schizophre-
nia pathobiology, the findings point to potential effects 
in mature oligodendrocytes and OPCs which may benefit 
schizophrenia white matter deficits.

Despite the beneficial effects on oligodendrocytes, 
WIN55,212-2 induces psychotic behavioral similar to 
∆9-THC [53–56]. However, low doses of WIN55,212-2 
improve behavioral-like symptoms in animal model of 
schizophrenia [53, 54]. Another promising cannabinoid in 
schizophrenia treatment, cannabidiol, displays effects on 
OPCs. Studies have shown a protective role of cannabidiol 
against oxidative stress by decreasing the production of reac-
tive oxygen species in OPCs [86, 87]. Redox disturbance 
has been implicated in schizophrenia [88, 89], and oligo-
dendrocytes seem to be widely affected by oxidative stress 
in schizophrenia [88], giving strength to this hypothesis. 
Additionally, there are reports that apoptosis induced by 
lipopolysaccharide (LPS) and endoplasmic reticulum stress 
in OPCs were attenuated by cannabidiol [86].

In vivo study showed that cannabidiol decreases inflam-
mation, demyelination, axonal damage, and inflammatory 
cytokine levels in an animal model of multiple sclerosis [89]. 
However, cannabidiol exhibits cytotoxicity in oligodendro-
cytes of the optic nerve by increasing intracellular  Ca2+ lev-
els [90]. These controversial findings can result from varying 
stages of the disease or different sources of cells. However, 
the dosage range also could be responsible for these different 
effects, since biphasic effects have been shown in behavioral 
data from multiple sources as mentioned in a previous study 
[53]. Thus, investigations about cannabidiol effects on oli-
godendrocytes are required to understand the mechanism, 
clinical usefulness, and the suitable dose for treatment.

As mentioned, MAGL is the main enzyme responsi-
ble for hydrolysis of 2-AG in the brain, producing arachi-
donic acid and glycerol [91]. Studies have suggested two 
important results of blocking MAGL. First, data showed 
the involvement of 2-AG in neuroprotection [92]; second, 
anti-inflammatory properties of blocking MAGL have been 
demonstrated, via a decrease in cyclooxygenase (COX) 
precursors, and a subsequent decrease in prostaglandin 
synthesis [93–95]. Study reported that the MAGL inhibi-
tor reduced cytotoxicity in oligodendrocytes, as well as 
reduced demyelination, inflammation, and clinical severity 
in an animal model of encephalomyelitis [96], suggesting the 
role of 2-AG enhancement in oligodendrocyte protection and 
demyelination process. In agreement with this, inhibition 
of DAGL disrupted oligodendrocyte maturation, suggesting 
that 2-AG plays a key role in oligodendrocyte differentia-
tion [97]. Therefore, the neuroprotective effects of blocking 
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MAGL are a potential pharmacological tool to treat disor-
ders with neuroinflammation, such as schizophrenia.

Astrocytes, schizophrenia, and cannabinoids

Similar to oligodendrocytes, astrocytes have been investi-
gated in the schizophrenia pathobiology. Studies have shown 
impairments of these cells in schizophrenia. Contradic-
tory results of expression have been shown (for example, 
increase, decrease, or no change) for glial fibrillary acid 
protein (GFAP), an astrocytic marker [98]. These discrepan-
cies may be related to techniques used, brain areas analyzed, 
or the stage of disorder. Despite this inconclusive data, a 
gene set analysis found that astrocyte genetic alterations are 
associated with an increased risk for schizophrenia [99], 
strengthening the hypotheses suggesting an astrocytic role 
in this disorder.

Astrocytes are the most abundant glial cells in the brain 
and they present several physiological functions, such as 
maintaining homeostasis, providing energy support for neu-
rons, and assisting with immune system functionality [100]. 
Moreover, communication has been proposed between 
astrocytes and pre- and post-synaptic neurons, namely tri-
partite synapses [101]. Recently, a study reviewed the tri-
partite synapse and suggested that astrocytic signaling and 
gliotransmission present different functions depending on 
brain region [102]. Additionally, this review reported bidi-
rectional signaling between astrocytes and glutamate trans-
mission pathways.

Unlike neurons, astrocytes are not electrically excitable; 
signaling occurs by altering levels of intracellular calcium 
[103], which stimulates the release of gliotransmitters (e.g., 
glutamate and d-serine). Also, astrocytes play an important 
role in extracellular glutamate uptake in synapses through 
the astrocytic glutamate transporter-1 (GLT-1) and gluta-
mate aspartate transporter (GLAST) [98]. These transport-
ers remove glutamate from the synaptic cleft, preventing 
excitotoxicity in neurons.

Another physiological function of astrocytes is related 
to synaptic plasticity, including pruning and assisting in the 
formation of synapses [104, 105]. Studies have shown the 
expression of protein disrupted in schizophrenia-1 (DISC-1) 
in astrocytes. A study demonstrated that a mutant astrocytic 
DISC-1 protein was associated with decrease in d-serine, a 
co-ligand of NMDA receptors [106]. In addition, a mutant 
DISC-1 expressed in astrocytes, co-cultured with neurons 
resulted in an impairment of dendritic and synaptic matura-
tion, both of which were counteracted by d-serine treatment 
[107]. Interestingly, clozapine, but not haloperidol, activated 
astrocytes and increased d-serine levels [108]. These find-
ings suggest that astrocytes may be a target of drugs to treat 
schizophrenia.

The role of astrocytes in tripartite synapses has been 
demonstrated, and the endocannabinoid system presents an 
interesting contribution to this interaction [109]. CB1 and 
CB2 expression, and their function in astrocytes, is under 
controversial debate; but in vivo and in situ studies have 
reported cannabinoid receptor expression in astrocytes [9, 
110, 111]. Enzymes related to endocannabinoid synthesis 
(NAPE and DAGL) and degradation (FAAH and MAGL) 
were also found in astrocytes [112]. Studies have shown that 
astrocytes produce AEA, 2-AG, homo-gamma-linolenyleth-
anolamide, and docosatetraenylethanolamide in a calcium-
dependent manner [10, 111, 113–115]. Moreover, astrocytes 
are responsive to exogenous cannabinoids [116–118].

The main effects of cannabinoids on astrocytes occur 
through the activation of CB1. In astrocytes, CB1 is coupled 
to  Gq/11 which activates phospholipase C and increases intra-
cellular  Ca2+ levels [115, 117]. This alteration in  Ca2+ levels 
stimulates the release of glutamate which can in turn acti-
vate NMDA receptors in neurons [115]. Study using mutant 
mice lacking type-1 cannabinoid receptors in astroglial 
cells (GFAP-CB1-KO) showed that memory impairment 
induced by ∆9-THC was abolished in this animal [118]. 
This study also reported that heavy cannabinoid treatment 
elicited glutamate release through the activation of astro-
glial CB1 [118]. Additionally, the CB1 activation increases 
glutamate levels by inhibition of its uptake by GLT-1 and 
GLAST [115–119]. Thus, cannabinoid and astrocyte interac-
tion could affect glutamatergic neurotransmission, shown to 
be changed in schizophrenia, and further investigations can 
contribute to understand this hypothesis.

Another role of astrocytes in the pathobiology of schizo-
phrenia may involve a neuroinflammatory process, since 
these cells modulate inflammatory response and tissue 
repair [120]. In vitro studies have reported that CB1/CB2 
agonists attenuated the release of proinflammatory cytokines 
by astrocytes [121–126], suggesting that cannabinoids may 
have the potential to modulate neuroinflammation. In addi-
tion, cannabidiol attenuated neuroinflammation in astrocytes 
through peroxisome proliferator-activated receptor gamma 
(PPARγ) activation [127]. In this regard, the activation of 
PPARs has been proposed as a potential treatment for schiz-
ophrenia [128].

As previously mentioned, the inhibition of MAGL results 
in neuroprotection. It was found that MAGL had high levels 
of expression in astrocytes [129] suggesting that these cells 
may be responsible, at least in part, for the metabolism of 
2-AG in the brain. Study using an animal model with the 
deletion of MAGL in astrocytes reported that, expressed in 
astrocytes, this enzyme has the main responsibility for the 
availability of arachidonic acid for prostaglandin synthesis, 
which is involved in neuroinflammation [130]. However, 
activation of CB1 by 2-AG may result in psychotomimetic 
effects, since this cannabinoid is a full agonist of CB1 
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receptors. In agreement, genetic deletion of MAGL in mice 
resulted in decreased levels of arachidonic acid and pros-
taglandin levels when the animals were treated with LPS 
[94]. Interestingly, one study demonstrated that astrocytic 
deletion of MAGL did not promote psychotomimetic effects 
or desensitization of cannabinoid receptors [131], which are 
both common effects of exogenous CB1 agonists, such as 
∆9-THC. Moreover, a potent inhibitor of MAGL, KML29, 
presented anti-inflammatory properties without promoting 
cannabimimetic effects in mice, depending on the dose [132, 
133]. As a whole, these data suggest that the inhibition of 
MAGL activity represents a promising pharmacological tool 
to treat disorders with neuroinflammatory processes, such 
as schizophrenia, but the dosage range should be carefully 
considered to avoid psychotomimetic side effects.

Microglia, schizophrenia, and cannabinoids

Microglia play an important role in immune-mediated 
response in the brain, and modulate neuronal plasticity. 
Resting microglia present motile protrusions that detect 
alterations in the local environment. Once a cell is acti-
vated, protrusions are retracted and the cell body becomes 
enlarged. Activated microglia are classified as being in M1 
or M2 states, which are associated with a proinflammatory 
or anti-inflammatory response, respectively. Evidence from 
pathobiological investigations points to immune-related 
changes in schizophrenia [134]. Inflammatory biomarkers 
and clinical findings [135] have been reported in schizophre-
nia, suggesting that neuroinflammation may contribute to the 
pathogenesis of this disorder. Studies found increased levels 
of interleukin 1 and 6 (IL-1 and IL-6), C-reactive protein, 
and tumor necrosis factor alpha (TNF-α) in schizophrenia 
patients [136, 137]. These cytokines lead to several branches 
of the inflammatory response, among these being the activa-
tion of microglia, the primary immune cells of the central 
nervous system.

Once activated, microglial cells can play a key role in 
causing damage to the brain, through the release of proin-
flammatory mediators such as IL-1, IL-6, interferon gamma 
(IFN-γ), and TNF-α; an increase in COX-2 expression and 
activation; an increase of reactive oxygen species; and the 
activation of astrocytes [138]. Interestingly, postmortem 
studies have demonstrated higher activation and increased 
microglia density in schizophrenia [139]. Moreover, posi-
tron emission tomography studies have reported increased 
microglial activation in patients with schizophrenia and in 
patients with ultra-high risk for psychosis [140, 141]. How-
ever, recent studies did not support the inflammation role in 
schizophrenia [142] or microglial activation in first episode 
psychosis [143].

The use of pharmacological agents such as minocy-
cline which counteract microglia hyperactivation can be an 

interesting tool to treat schizophrenia [144, 145]. Relevantly, 
studies have shown improvement of negative and cognitive 
symptoms of patients when minocycline is used as an add-
on treatment with antipsychotic drugs [146, 147]. Animal 
studies have also reported an improvement of behavioral-
like schizophrenia symptoms by minocycline [144, 148]. 
Finally, antipsychotics alleviate microglia overactivation 
and modulate cytokine levels in both in vivo and in vitro 
studies [149, 150]. In contrast, another group reported the 
increased density of microglia in brain of rats treated with 
antipsychotics [151].

Data have shown that cannabinoid drugs modulate micro-
glia activation. CB1 and CB2 expressions have been shown 
in microglia under physiological conditions [9, 152]. The 
increasing in CB2 expression has been found in pathologi-
cal processes of neurodegenerative disorders [153] and in 
microglia cultures [9]. The 2-AG and AEA are synthesized 
on-demand by microglia [154], and these synthesis may be 
20-fold more than what is produced by neurons or astrocytes 
in vitro [10]. Once synthesized, endocannabinoids act as 
autocrine signalers by CB1 and CB2 activation, resulting in 
a display of the M2 phenotype. Activated M2 microglia are 
associated with anti-inflammatory processes, tissue repair, 
and immune regulation [155]. Endocannabinoids synthe-
sized by microglia may act as paracrine mediators in neu-
rons or other glial cells. Therefore, activated microglia have 
a key role in endocannabinoid synthesis and release, mainly 
in neuroinflammatory processes. However, there are no 
reports of the contribution of microglia in endocannabinoid 
synthesis in schizophrenia. To note, AEA presents protec-
tive and antipsychotic properties in schizophrenia patients 
[156–158] and animal models [53, 159, 160]. Thus, altera-
tions in AEA synthesis by microglia could have implications 
for schizophrenia.

Despite protection of the brain by microglia, overactiva-
tion of these cells leads to damage to the brain, and drugs 
that have been shown to mediate the damage play a role 
in schizophrenia treatment. CB1 and CB2 agonists have 
proven to decrease microglia activation [161, 162]. Moreo-
ver, a CB2 agonist inhibited the release of reactive oxygen 
species by microglia cells treated with LPS [163]. In addi-
tion, studies of Alzheimer’s disease reported a decrease in 
proinflammatory cytokines in microglial culture, brought 
on by a CB2 agonist [164]. Therefore, schizophrenia could 
be benefited with these anti-inflammatory and antioxidant 
effects. Although the mechanisms underlying these proper-
ties are not fully understood, the decrease in intracellular 
 Ca2+ levels seem to be involved [165].

On the other hand, sub-chronic administration of ∆9-THC 
leads to microglial activation and an increase of proinflam-
matory markers in mice; and these effects are a result of 
down-regulation of CB1 receptors, which was correlated 
with cerebellar deficits [166]. While sub-chronic ∆9-THC 
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administration leads to a pro-inflammatory profile, canna-
bidiol presents opposite effects in several conditions. Data 
reported that cannabidiol, like clozapine, attenuated the 
schizophrenia-like behavior induced by MK-801, and this 
effect was correlated with a decrease in microglia reactivity, 
suggesting that the antipsychotic effects of cannabidiol may 
involve microglia [167]. Cannabidiol and dimethylheptyl-
cannabidiol (a synthetic derivative of cannabidiol) attenu-
ated LPS-induced inflammatory pathways in BV-2 micro-
glial cells [168, 169]. Cannabidiol also prevented microglial 
activation by decreasing intracellular  Ca2+ levels [165]. 
These data point to potential mechanism of cannabidiol in 
microglial activation observed in schizophrenia.

Microglia overactivation has been also implicated in oli-
godendrocytes’ damage [170]. Study showed that second-
generation antipsychotics, but not first ones, can protect oli-
godendrocytes by modulating microglial activation [171]. 
Moreover, activated microglia induces reactive astrocytes, 
which may impair neuronal support and contribute to the 
death of neurons and oligodendrocytes [172]. In this regard, 
modulating of microglial response by cannabinoids can pro-
tect other glial cells from damage.

Conclusion

Alterations in neurotransmitters have been proposed as 
the main mechanism in schizophrenia pathobiology, but 
consistent findings have reported the role of glial cells in 
schizophrenia, suggesting a glial hypothesis for the patho-
physiology of this disorder. Glial cells present CB1 and CB2 
receptors, and can produce and metabolize endocannabi-
noids. Thus, the modulation of endocannabinoid signaling 
in glial cells can result in pharmacological tools to treat and 
prevent white matter deficits, neuroinflammatory response, 
and other pathological mechanisms observed in schizo-
phrenia. On the other hand, some cannabinoid agonists can 
worsen positive symptoms of schizophrenia depending on 
the dose, mainly via CB1 receptors, limiting the use of CB1 
agonists in treating this disorder. However, selective CB2 
drugs may present advantages compared to CB1 agonists, 
and findings suggest that CB2 is an important modulator 
in neuroinflammatory conditions. Moreover, pharmaco-
logical tools to increase endocannabinoid levels seem to be 
interesting to treat schizophrenia, since AEA and 2-AG can 
be protective for some brain cells. Finally, cannabidiol—
a potential antipsychotic treatment—modulates key role in 
glial cells. However, fewer studies have shown the implica-
tions of cannabinoid modulators in glial cells for the treat-
ment of schizophrenia. Notwithstanding, investigation about 
the contribution of glial cells on psychotomimetic effects of 
chronic or acute cannabis abuse can increase the knowledge 
about interplay between endocannabinoid system and glial 

cells. Thus, further studies are needed to better understand 
the schizophrenia pathobiology as well as the discovery of 
novel approaches to treat this disorder.
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