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Ageing and atherosclerosis are associated with oxidative stress. Mitochondrial redox function declines with age-
ing. Here we testedwhether ageing LDL receptor knockout mice (LDLr−/−) develop spontaneous atherosclerosis
and whether mitochondrial reactive oxygen species (mtROS) correlate with atherosclerosis. Compared with
youngmice, aged LDLr−/−mice exhibited 20-fold larger aortic lesion size, although the plasma cholesterol levels
did not vary between age groups. The lesion sizes increased exponentially from 3 to 24months of age (r= 0.92,
p = 0.0001) and were correlated with mtROS across the age range (r = 0.81, p = 0.0001). Thus, LDLr−/− mice
develop spontaneous diet-independent atherosclerosis, that advances exponentially with ageing. We propose
that age related increases in mtROS contribute to accelerate atherosclerosis development in hypercholesterol-
emic mice.

© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

Atherosclerosis constitutes the pathogenic process of ischemic heart
disease and of stroke that are known as the major causes of mortality
around the world (Mozaffarian et al., 2015). The strongest unchange-
able independent risk factor for the development of atherosclerosis is
ageing (Ferrari et al., 2003). Cellular oxidative stress seems to be a com-
mondenominator inmany age-related diseases, including atherosclero-
sis. The current view on atherogenesis proposes that the initiation steps
are triggered by a local vascular oxidative stress that involves LDL oxida-
tion and subsequent foam cell formation. However, the mechanisms
that drive in vivo oxidative stress are still largely unclear (Steinberg,
2009; Yurdagul et al., 2016). Mitochondrial respiration is one of the
major sources of cellular reactive oxygen species (ROS) (Boveris and
Chance, 1973). These reactive species are important signalingmolecules
for several cell processes, including differentiation, adaptation, and se-
nescence (Hamanaka and Chandel, 2010). The levels of ROS are con-
trolled through efficient mitochondrial and cell antioxidant systems.
High ROS generation rates or failure of antioxidant defenses induce cel-
lular oxidative stress observed in many degenerative and age-related
diseases (Figueira et al., 2013; Hamanaka and Chandel, 2010). Mito-
chondrial function declines with ageing. This may be due to
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accumulation of oxidative damage observed in different model systems
and organisms (Liu et al., 2002; Bratic and Larsson, 2013). Thus,mitochon-
dria play an important role in age-related diseases, however, whether mi-
tochondrial deterioration is a cause or a consequence of the ageing process
remains elusive (Sanz, 2016).Mitochondrially derived ROS seems to play a
relevant role in the context of atherosclerosis, since they are involved in
endothelial dysfunction, infiltration and activation of inflammatory cells
and apoptosis of endothelial and vascular smooth muscle cells
(Hulsmans et al., 2012). Our group has previously shown that mitochon-
dria from various tissues of hypercholesterolemic atherosclerosis-prone
LDL receptor knockout mice (LDLr−/−) release more ROS than wild type
derived mitochondria (Oliveira et al., 2005). Furthermore, we recently re-
ported that mitochondrial reactive oxygen species (mtROS) is a novel in-
dependent risk factor for the development of spontaneous
atherosclerosis in this familial hypercholesterolemia mouse model
(Dorighello et al., 2016). Thus, the objectives of the present study were:
1 - to evaluate whether there is spontaneous (not diet induced) athero-
sclerosis development in aged LDLr−/− mice, and 2 - whether mtROS
levels were associated with atherosclerosis severity in the ageing context.
2. Material and methods

2.1. Animals

Male LDL receptor–knockout mice founders were purchased from
the Jackson Laboratory (Bar Harbor, ME) and maintained in the
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University animal facility (CEMIB/Unicamp). The animal protocols were
approved by the University's Committee for Ethics in Animal Experi-
mentation (CEUA/UNICAMP, protocol #1101-1). Mice had free access
to standard laboratory rodent chow diet (Nuvital CR1, Colombo, Paraná,
Brazil) and were housed at 22 ± 1 °C on a 12 h light/dark cycle. At the
age range of 2 to 24 months, 1 to 5 mice were anesthetized with keta-
mine/xylazine (100 and 10 mg/kg body weight, respectively) for heart
perfusion followed by heart and liver excision.
2.2. Plasma cholesterol analysis

Blood samples were drawn from the retro-orbital plexus of anesthe-
tized andovernight fastedmice. Total cholesterolwasmeasured in fresh
plasma using a standard commercial kit (Roche-Hitachi®, Germany and
Wako®, Germany).
2.3. Mouse liver mitochondria preparation and reactive oxygen species re-
lease (ROS)

Livermitochondriawere isolated by conventional differential centri-
fugation at 4 °C. The experimentswere done in a standardmedium con-
taining: 125mMsucrose, 65mMKCl, 2mM inorganic phosphate, 1mM
magnesium chloride, and 10mMHepes buffer, pH 7.2, as previously de-
scribed (Oliveira et al., 2005). Isolated mitochondria were kept on ice
and used within 90 min from preparation. ROS levels derived from mi-
tochondria were monitored using the membrane-permeable fluores-
cent dye 2′,7′ dichloro-dihydro-fluorescein diacetate (H2DCF-DA) as
previously described (Oliveira et al., 2005). A calibration curve was ob-
tainedwith known concentrations of dichlorofluorescein (DCF) (Sigma-
Aldrich, Inc., St Louis, MO, catalog # D6665).
Fig. 1.Atherosclerosis, plasma cholesterol levels andmitochondrially derived reactive oxygen sp
old) LDLr−/− mice. (A) Lipid stained areas of atherosclerotic lesions in the aorta root (n = 5, *P
plasma cholesterol levels (n = 12–13). (D) Liver mitochondrial ROS (mtROS) levels as measur
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2.4. Histological analysis of atherosclerosis lesions

In situ perfused hearts were excised and embedded in Tissue-Tek®
OCT compound (Sakura, USA), frozen at−80 °C, cut in 10 μm-sections
along 480 μm aorta length from the aortic valve leaflets and stained
with Oil red O as previously described (Dorighello et al., 2016). The
lipid-stained lesions were quantified using the Image J (1.45 h)
software.

2.5. Statistical data analyses

The results are presented as themeans± SEM. The comparisons be-
tween the groups were analyzed by unpaired Student's t-test and the
correlation analyses by Spearman's correlation test. The level of signifi-
cance was set at P b 0.05.

3. Results and discussion

LDL receptor knockout (LDLr−/−) mice, a model of human familial
hypercholesterolemia, are widely used to study diet-induced athero-
sclerosis. It is generally accepted that LDLr−/− mice do not develop ath-
erosclerosis, unless high fat or cholesterol containing diets are
employed (Jawień et al., 2004). However, a few previous studies includ-
ing ours (Dorighello et al., 2016; Mortensen et al., 2002) have reported
the presence of small andmoderate spontaneous atherosclerotic lesions
in young adult (4–7 months of age) LDLr−/− mice fed with standard
(low fat) diets. High fat andhigh cholesterol diets induce atherosclerosis
very fast and potently in this model. However, these unbalanced diets
also induce a range of secondary factors such as inflammation, insulin
resistance and obesity, which interact synergistically to increase athero-
sclerosis. Thus, in this study we aimed at investigating whether sponta-
neous atherosclerosis lesions would increase along with ageing in
ecies (mtROS) in standard chowdiet fed young (4–5month-old) and aged (16–18month-
b 0.001). (B) Representative images of aorta root from young and aged mice. (C) Fasting
ed by DCF oxidation (n = 4, *P b 0.05).
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LDLr−/−mice fedwith a standard chowdiet (4 g% fat). Initially,we com-
pared the aorta root (atherosclerosis predilection site) of 16–18month-
old with 4–5 month-old LDLr−/− mice. The aged mice presented a 20-
fold increase in the size of the fat stained lesions compared with lesions
of young mice (Fig. 1A and B). The plasma cholesterol levels were sim-
ilarly high in both young and aged LDLr−/−mice (Fig. 1C), and liver mi-
tochondrial reactive oxygen species levels (mtROS) were increased 40%
in aged LDLr−/− mice compared with levels of young mice (Fig. 1D).

In healthy humans and some wild type rodent models, plasma cho-
lesterol levels increase with ageing (Celermajer et al., 1994; Fujihara et
al., 1992). However, most mouse strains have no or very mild increases
of plasma cholesterol with ageing (Rivnay et al., 1979; Weibust, 1973,
Nakashima et al., 1994). Here, the standard chow diet fed LDLr−/−

mice exhibited stably high levels of plasma cholesterol in early and ad-
vanced ages. The high levels of plasma cholesterol since birth certainly
contribute to the development of spontaneous lesions in this model. El-
evated LDL-cholesterol levels constitute a bulk of oxidisable substrate,
without which ROS induced lesions would develop very slowly.

Primary culture of aorta smoothmuscle cells derived from agedwild
type C57BL6mice (16 vs 4month-old) have increased global ROS levels
that were associated with decreased endogenous antioxidant activity,
increased lipid peroxidation, and mitochondrial DNA damage (Moon
et al., 2011). By using specific mitochondrial probes or isolated mito-
chondria, more recent studies have shown that mtROS are associated
with ageing (Martínez-Cisuelo et al., 2016; Vendrov et al., 2015) and
with atherosclerosis (Vendrov et al., 2015; Dorighello et al., 2016). Hy-
perlipidemic aged apo E knockout mice (16 month-old) present in-
creased atherosclerosis lesion area, higher cellular and mitochondrial
superoxide radical levels and oxidatively damaged nuclear DNA in
Fig. 2. Progress of atherosclerosis andmitochondrially derived reactive oxygen species (mtROS)
areas (Spearman correlation of log-transformed areas and age: r = 0.92, P b 0.0001, n = 34
P b 0.0001, n = 22). (C) Spearman correlation between mtROS levels and atherosclerosis (log-
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their aortic wall compared with 4 month-old mice (Vendrov et al.,
2015). The authors also showed that cellular andmtROSwere increased
in the aortic vascular smoothmuscle cells of agedwild type andNOX1/2
knockout mice, indicating that this feature is related with the ageing
process rather than with the hyperlipidemic context (Vendrov et al.,
2015). Compared with young wild type mice (4 month-old CB6F1 hy-
brid), aged mice (16 month-old) presented higher ROS levels from iso-
lated liver mitochondria (120%), and other signs of oxidative damage
such as mitochondrial protein and lipid oxidation (Martínez-Cisuelo et
al., 2016).

To confirm that augmented atherosclerosis and mtROS in LDLr−/−

mice would be a function of ageing, we analyzed a detailed age range
from 2 to 24 month-old. Small atherosclerotic lesions appeared as
early as 3 months of age and advanced exponentially up to the age of
24months (Fig. 2A). The Spearman correlation test showed a significant
direct relationship between atherosclerosis lesion area and ageing (r =
0.92, P b 0.0001). Accordingly, epidemiological studies have clearly
shown that the atherosclerotic process in humans increases exponen-
tially with ageing (Simons, 1989).

The free radical theory of ageing, proposed N60 years ago (Harman,
1956), postulates that ageing reflects an accumulation of oxidative
damage inmacromolecules and cell structures. The relevance of themi-
tochondria as a source of free radical production was later suggested by
Harman (1972). This “mitochondrial theory of ageing” has been rein-
forced by several subsequent studies (Barja, 2013). Therefore, we hy-
pothesized that in LDLr−/− mice the levels of mitochondrially derived
ROS would be a major mechanism linked to the progression of the dis-
ease. Fig. 2B shows that mtROS levels indeed correlate with ageing
(Spearman correlation r = 0.88, P b 0.0001). Furthermore, the extent
alongwith ageing in LDLr−/−mice fedwith standard chow diet. (A) Atherosclerotic lesion
). (B) Liver mitochondrial ROS (mtROS) levels as measured by DCF oxidation (r = 0.88,
transformed lesion areas): r = 0.81, P = 0.0001, n = 17.
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of atherosclerosis (log transformed lesion area) correlates with mtROS
levels (r= 0.81, P= 0.0001, Fig. 2C) in this context of ageing. Although
this correlation does not imply in causation, it evidences a degree of de-
pendency between atherosclerosis development and increases in mito-
chondria derived ROS during ageing. Unfortunately, studies with
antioxidant interventions to reduce atherosclerosis have shown con-
flicting results and disappointing outcomes. While some studies in
humans and animals models reported reduced atherosclerosis, others
have shown that antioxidant treatments actually increased atheroscle-
rosis (Lonn et al., 2012). This critical question is complicated because
of the involvement of ROS in normal signaling pathways and because
of spatial compartmentalization of cellular oxidative signaling and/or
damage (Lonn et al., 2012). A good approach to confirm a causal rela-
tionship between mtROS and atherosclerosis in the context of hyper-
cholesterolemia would be to treat LDLr−/− mice with effective
mitochondrial targeted antioxidants to reduce mtROS and consequent-
ly, the severity of atherosclerosis (Victor et al., 2009).

In conclusion, these data show that LDLr−/−mice develop spontane-
ous atherosclerosis that worsens exponentially along with ageing and
correlates with age related increases in mitochondrial ROS levels.
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