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Abstract Easy ambient sonic-spray ionization mass spec-
trometry (EASI-MS) was used to interrogate the hepatic lipid
profiles of hypertriglyceridemic and control normotriglyceri-
demic mice. The analyses of ex vivo complex lipid mixtures
were made directly with EASI-MS without accompanying
separation steps. Intense ions for phosphatidylcholines and
triacylglycerols were observed in the positive ion mode
whereas the spectra in the negative ion mode provided
profiles of phosphatidylethanolamines and phosphatidylino-
sitol. EASI-MS was coupled to high-performance thin-layer
chromatography for analysis of free fatty acids. Fourier
transform–ion cyclotron resonance–mass spectrometry was
also employed to confirm the identity of the detected lipids.
We demonstrated higher incorporation of oleic acid in
phosphatidylcholine and triacylglycerol composition, higher
relative abundance of arachidonic acid containing phosphati-

dylinositol, and overall distinct free fatty acid profile in the
livers of genetic hypertriglyceridemic mice. We propose that
these alterations in liver lipid composition are related to the
higher tissue and body metabolic rates described in these
hypertriglyceridemic mice.

Keywords Hypertriglyceridemia .Mice liver. Ambient
ionization .Mass spectrometry. Lipids

Introduction

Hypertriglyceridemia is an independent risk factor for
atherosclerotic coronary heart disease, stroke, and nonalco-
holic fatty liver disease [1–3]. Genetically modified mice
overexpressing human apolipoprotein (Apo) C-III (hyper-
triglyceridemic) have elevated triacylglycerols (TAG) levels
due to the presence of enlarged TAG-rich lipoproteins in
plasma [4–6]. Apo C-III in excess delays the clearance of
TAG-rich lipoproteins, and their prolonged residence time in
plasma continuously provides more free fatty acids (FFA) to
the peripheral tissues. High plasma FFA levels lead to
increased uptake of FFA into non-adipose tissues such as
liver and may contribute to intracellular lipid accumulation.
In a previous work, using an enzymatic–colorimetric assay,
we showed that hypertriglyceridemic mice liver presented a
fivefold elevation in the content of total glycerolipids as
compared with control livers [7].

We have also demonstrated that liver mitochondria
isolated from hypertriglyceridemic mice presented higher
resting O2 consumption rates [8]. Intracellular fatty acid
content is probably implicated in this process, since
respiratory rates were totally corrected by treatment of
hypertriglyceridemic mice with fibrates, which activate
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fatty acid β-oxidation and decrease the content of intracel-
lular lipids. The higher resting respiratory rates occur due to
mild mitochondrial uncoupling promoted by the stimulated
activity of the ATP-sensitive potassium channel. Accordingly,
these mice presented increased whole-liver oxygen consump-
tion, increased whole body metabolic rate, and higher food
intake, without enhanced weight gain [9]. Now, we focus our
attention on the liver lipid profile that might be involved in
increased metabolism of hypertriglyceridemic liver. We
hypothesize that not only the total amount of FFA but also
the differential content of FFA species may be responsible for
the metabolic effects described in the liver of these mice.

Mass spectrometry (MS) has been established as a
powerful analytical tool with increasing use in the
analysis of complex lipid mixtures in lipidomic studies
[10–13]. Electrospray ionization (ESI) [14], atmospheric
pressure chemical ionization [15], and matrix-assisted
laser desorption/ionization [16] are well-established ioni-
zation techniques that allow lipids to be analyzed by MS
with high sensitivity and no or little fragmentation.
However, the ability of these techniques to detect the
individual lipid classes differs significantly. Due to the
presence of the quaternary ammonium group in its head
group, phosphatidylcholine and sphingomyelin are strong-
ly cationic and ionize well in the positive ion mode. This
easy ionization may cause the suppression of less polar
lipids. Complex lipid mixtures require therefore previous
chromatographic separation into the individual lipids or
lipid classes [17]. High-performance thin-layer chroma-
tography (HPTLC) makes use of silica gel of a very
uniform and small particle size, permitting excellent
separations with comparatively short elution times [18].
Secure spot characterization in HPTLC requires, however,
coupling with other techniques [19]. HPTLC provides a
proper surface in which direct on-spot desorption and
ionization of analytes can be performed [20]. Several MS
techniques have been applied to characterize HPTLC
spots, and it has been facilitated by employing ambient
MS ionization methods [21–24]. Easy ambient sonic-spray
ionization mass spectrometry (EASI-MS) [25, 26] is an
ambient ionization technique [21] which allows the direct
and fast MS analysis of samples in the open atmosphere
with little or no sample preparation. In EASI, the sonic
spray creates droplets of solvent (e.g., methanol) which
end up being charged (both positively and negatively) due
to statistical unbalanced distribution of cations and anions
in these very minute droplets with limited charge-carrying
capability. The dense stream of the sonic (bipolar) charged
droplets promotes analyte pick up from the surface,
concomitant ionization as either cations or anions, and
then transfer of the analyte ions to the gas phase for further
mass analysis. Ionization by EASI is soft, causing no or
minimum fragmentation [21]. We have recently combined

TLC with EASI-MS for on-spot detection and character-
ization of pharmaceutical drugs and vegetable oils [27],
and HPTLC with EASI-MS for the quality control of
biodiesel and biodiesel–petrodiesel blends [28].

Herein, we investigate the application of direct EASI-
MS analysis to disclose the phospholipids and TAG profiles
that might be involved in increased metabolism of livers
from hypertriglyceridemic mice. EASI-MS was also cou-
pled to HPTLC for analysis of FFA due the ionic
suppression caused by phospholipids (mainly phosphati-
dylethanolamine) in the negative mode.

Experimental

Chemicals and reagents

HPLC-grade methanol, diethyl ether, n-hexane, and
chloroform were purchased from Merck SA and used
without further purification. FFA, TAG, and phospholi-
pids used as standards were from Sigma (Deisenhofen,
Germany).

Animals

Human apolipoprotein C-III transgenic (line 3707) [29]
crossbred with wild-type C57Bl6 mice have been maintained
for the last 14 years at the animal facilities of the Department
of Physiology and Biophysics at the State University of
Campinas (Campinas, Brazil). The experiments were ap-
proved by the university’s ethics committee and are in
accordance with the Guidelines for Handling and Training of
Laboratory Animals published by the University’s Federa-
tion for Animal Welfare. Mice had access to standard
laboratory rodent chow (CR1; Nuvital, Colombo, Paraná,
Brazil) and water ad libitum and were housed at 22±2 °C on
a 12-h light–dark cycle. Six female heterozygous apolipo-
protein C-III transgenic (hypertriglyceridemic) and six non-
transgenic (normotriglyceridemic) littermates, aged
4 months, were used in this study. Total TAG (Roche
Diagnostic GmbH, Mannheim, Germany) levels were
determined by enzymatic–colorimetric methods according
to the manufacturers’ instructions. Hypertriglyceridemic
mice presented fasting plasma TAG levels >300 mg/dL and
normotriglyceridemic mice levels <100 mg/dL.

Lipid extraction

Animals were killed by cervical dislocation and approxi-
mately 300 mg of each liver were rapidly homogenized in
1 ml of cold chloroform (4 °C) separately. The liver lipids
were extracted adding 2 ml methanol and 0.8 ml water,
according to Bligh and Dyer [30]. The lower chloroform
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layer was dried under a stream of nitrogen and dissolved in
0.05 ml chloroform to immediate analyzes. Each lipid
extract represents a single animal.

High-performance thin-layer chromatography

Only for FFA analysis by EASI-MS, lipids were separated
on HPTLC plates (silica gel 60 plates without fluorescent
indicator, Merck, Darmstadt, Germany). Lipid extracts
(2 μL) were run in a solvent mixture composed of
hexane/diethyl ether/acetic acid (80:20:1.5v/v) in an auto-
matic developing chamber (ADC 2, CAMAG, Muttenz,
Switzerland) previously saturated with the same solvent
system (20 mL) for 20 min (25±2 °C, relative humidity
75%). The plates were then dried. Lipid spots were
identified by UV light (λ=254 nm) and circled using a
pencil. Images of chromatograms were taken with a
photographing system. The identity of the lipids in each
spot was established by comparison with the Rf values
measured for authentic standards. After HPTLC separation,
EASI-MS was performed by spraying along the whole spot
of FFA to promote their desorption/ionization and MS
characterization [27]. The whole spot was scanned to get a
representative spectrum.

Easy ambient sonic-spray ionization mass spectrometry

Liver extracts were analyzed in duplicate in both the
positive and negative ion modes, using a single-
quadrupole mass spectrometer (Shimadzu) equipped with
a homemade EASI source [25, 26]. The main experimental
parameters were as follows: The flow rate of methanol was
set at 20 μL min−1, N2 nebulizing gas in flow rate of 3 L
min−1, and paper (or capillary-HPTLC plate)-entrance angle
of ∼30°. When using samples without previous separation,
a tiny droplet (2 μL) of the liver extracts was dropped
directly onto the paper surface (brown Kraft paper) and let
dry. Mass spectra were accumulated over 60 s and scanned
along the m/z 50 to 1,000 range. When operating in the
negative ion mode, the methanol solvent was doped with
0.1% of the ammonium hydroxide. Standard TAG and
phospholipids were dissolved in chloroform, at a final
concentration of 1 mmol L−1, and efficiency of ionization
for TAG and phospholipids was calculated by the ratio of
intensities of TAG/more abundant phospholipids. Results
obtained show that CV is around 10% (data not show).

Fourier transform–ion cyclotron resonance–mass
spectrometry

Liver extracts diluted in methanol (100 μL) were loaded
into a 96-well plate, and an automated chip-based nano-ESI
system (Triversa NanoMate 100; Advion BioSciences,

Ithaca, NY, USA) was used for injecting the solution at a
rate of 0.2 μL/min in the Fourier transform–ion cyclotron
resonance–mass spectrometry (FT-ICR-MS) equipment.
Mass spectra were collected in both the positive and
negative ion modes in a LTQ FT Ultra mass spectrometer
(ThermoScientific, Bremen, Germany). NanoMate general
conditions were: gas pressure, 0.3 psi and capillary voltage,
1.55 kV. Mass spectra were accumulated over 5 min,
scanned over the 200–1,000m/z range, centered, and
aligned using the Xcalibur 2.0 software (ThermoScientific,
Bremen, Germany). The high mass accuracy obtained using
FT-ICR-MS (typically 0.1 ppm) allows unequivocal attri-
bution of TAG molecular composition.

Data analysis

Lipid analyses from each preparation were made in
duplicate, and averages were calculated. Data shown as
spectrum are representative of each group, and other data
are ratio averages ±SEM. Statistical analysis was performed
using Mann–Whitney non-parametric test conducted using
Origin 7.0 software (Origin Lab Corp., Northampton, MA).
P<0.05 was considered significant.

Results

Liver lipid extracts from normotriglyceridemic and hyper-
triglyceridemic mice were directly analyzed by EASI-MS.
Figure 1 shows representative EASI mass spectra in the
positive ion mode of the lipid mixtures from normotrigly-
ceridemic (Fig. 1a) and hypertriglyceridemic (Fig. 1b)
mice. The lipid profiles appear within the m/z 750 to 950
range and show both phospholipid and TAG ions. The
phospholipid ions corresponding to those detected in other
lipidomic MS studies performed using electrospray ioniza-
tion mass spectrometry (ESI-MS) [31] or desorption ESI-
MS [32–34]. The phosphatidylcholines can be detected as
[M+H]+, [M+Na]+, and [M+K]+ adducts as a result of
endogenous sodium and potassium salts in these tissues.
EASI favors the ionization of the sodium species [M+Na]+.
The abundant phosphatidylcholine ions are consistent with
the knowledge that these species constitute the majority of
biological membranes [35]. None of the major ions are due
to sphingomyelin since all have even m/z values (sphingo-
myelin contain two nitrogen and display, therefore, even
masses). Table 1 summarizes the major ions detected in the
EASI(+) spectra.

In the positive ion mode, the ion of m/z 780, the most
intense ion phospholipid of the spectra, was used as
reference to compare the profiles from hypertriglyceri-
demic and normotriglyceridemic liver obtained by EASI-
MS. The spectra clearly show an increased intensity of
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[phosphatidylcholine+Na]+ ions of m/z 782, 804, 806,
808, 828, and 832 relative to phosphatidylcholine m/z 780
for the hypertriglyceridemic liver (Fig. 1b) as compared
with normotriglyceridemic (Fig. 1a). Some of the phos-

phatidylcholine ions detected, such as m/z 782 and 806
includes two isobaric phosphatidylcholine species, [PC
34:1+Na]+ or [PC 36:4+H]+, which can only be differen-
tiated with tandem mass spectrometry [36] or with a

MM [M+H]+ [M+Na]+ [M+K]+ Assignmenta Elemental compositionb

757 758 780 796 PC 34:2 C42H80NO8P

759 760 782 798 PC 34:1 C42H82NO8P

781 782 804 820 PC 36:4 C44H80NO8P

783 784 806 822 PC 36:3 C44H82NO8P

785 786 808 824 PC 36:2 C44H84NO8P

805 806 828 844 PC 38:6 C46H80NO8P

809 810 832 848 PC 38:4 C46H84NO8P

852 – 875 891 TAG 52:5 C55H96O6

854 – 877 893 TAG 52:4 C55H98O6

856 – 879 895 TAG 52:3 C55H100O6

858 – 881 897 TAG 52:2 C55H102O6

860 – 883 899 TAG 52:1 C55H104O6

880 – 903 919 TAG 54:5 C57H100O6

882 – 905 921 TAG 54:4 C57H102O6

884 – 907 923 TAG 54:3 C57H104O6

Table 1 Assignment of the lip-
ids forming major ions in the
positive ion mode EASI mass
spectra of the normotriglyceri-
demic and hypertriglyceridemic
mice liver extracts

PC phosphatidylcholine, TAG
triacylglycerol
a Carbon number followed by
the number of unsaturated bonds
b Identified by FT-ICR-MS
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Fig. 1 Representative EASI
(positive ion mode) mass spec-
tra of six different liver extracts
from A normotriglyceridemic
and B hypertriglyceridemic
mice. C Averages±SEM of ion
intensities relative to m/z 780
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higher-resolution instrument. High-resolution mass spec-
trometry is one of the most valuable tools for lipid analysis
because it can provide exact molecular weights and unique
spectra to aid in identification of unknown compounds. In
this work, chemical assignments (Table 1) were confirmed
by FT-ICR-MS. Since the palmitic (16:0), stearic (18:0),
oleic (18:1), and linoleic (18:2) acids are the most
predominantly fatty acid in hepatic phosphatidylcholine
[37], the most abundant phosphatidylcholine ion of m/z
780 (34:2) probably is composed by palmitic/linoleic acids
whereas palmitic/oleic acids compose the phosphatidyl-
choline ions of m/z 782 (34:1). The decreased m/z 780/782
ratio in hypertriglyceridemic livers (Fig. 1c) means
therefore that the hypertriglyceridemic liver presents
higher proportion of oleic acid in its 34 carbons phospha-
tidylcholine compared with the normotriglyceridemic
liver. A higher content of the phosphatidylcholine ions of
m/z 804, 806, and 808 (36:4, 36:3, and 36:2) relative to
phosphatidylcholine m/z 780 in the hypertriglyceridemic
liver (Fig. 1c) was also observed. Among them, the ions of
m/z 806 and 808 ions are probably composed by linoleic/
oleic and oleic/oleic acids, respectively, again indicating a
higher incorporation of oleic acid in the phosphatidylcho-
line in the hypertriglyceridemic liver.

In addition to phosphatidylcholine ions, EASI(+)-MS
was also able to detect TAG ions contained in the livers
from normotriglyceridemic (Fig. 1a) and hypertriglyceri-
demic (Fig. 1b) mice in the m/z range 850 to 950. TAG
were detected mostly as the [TAG+Na]+ and [TAG+K]+

ions with undetectable protonated molecules [16, 38, 39].
The identification of the main TAG detected as such ions
(Table 1) shows that the ions of m/z 877 (52:4) and m/z

879 (52:3) significantly contribute to the TAG composition
profiles of both mice livers. The spectra clearly show that
the TAG ion of m/z 879 is significantly more intense (the
base ion) in the hypertriglyceridemic spectrum in compar-
ison to the normotriglyceridemic spectrum. The compar-
ison of the intensities of the TAG ions of m/z 877 (52:4)
and m/z 879 (52:3) indicates that the TAG ion of m/z 877
is predominant in liver from normotriglyceridemic where-
as m/z 879 is predominant in liver from hypertriglyceri-
demic mice. Moreover, hypertriglyceridemic liver also
presented TAG ions of m/z 877, 897, and 919 (relative to
the PC ion of m/z 780) of increased intensity compared
with normotriglyceridemic liver (see also the m/z 780/877
and 780/879 ratios in Fig. 1c). These results indicate
higher levels of TAG in hypertriglyceridemic liver. Since
the palmitic (16:0), oleic (18:1), and linoleic (18:2) acids
are the most predominantly fatty acid in hepatic TAG [40],
our results indicate that the predominant TAG ion of m/z
877 (52:4) in normotriglyceridemic livers probably is
composed by palmitic/linoleic/linoleic acids whereas in
the hypertriglyceridemic livers the predominant TAG ion
of m/z 879 (52:3) is probably composed of palmitic/oleic/
linoleic acids. It means a change from one linoleic to oleic
acid in the TAG from normotriglyceridemic compared
with hypertriglyceridemic liver.

Figure 2 shows representative spectra EASI mass in the
negative ion mode with profiles of liver lipids from
normotriglyceridemic (Fig. 2a) and hypertriglyceridemic
(Fig. 2b) mice. Phosphatidylcholine is generally undetect-
able in the negative ion mode due to permanent positive
charge located on the quaternary amine in the head groups
of such lipids. But phosphatidylethanolamines, phosphati-

ten.(x1,000)
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Fig. 2 Representative EASI
(negative ion mode) mass spec-
tra of six different liver extracts
from A normotriglyceridemic
and B hypertriglyceridemic mice
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dylserines, phosphatidylinositols, and sulfatides ionize
much more efficiently in the negative mode due to
ionization of phosphate group as R-PO3

-. The EASI(−)
mass spectra show that phosphatidylethanolamine domi-
nate and are detected exclusively as [M−H]− ions. Table 2
shows the identity of the major ions detected in the EASI
(−)-MS for these lipid mixtures. The intensity of the major
ions phosphatidylethanolamine of m/z 738, 762, 766, 788,
and 790 were very similar for both normotriglyceridemic
and hypertriglyceridemic mice. The phosphatidylinositol
ion of m/z 885 (38:4) was more intense in the livers from
hypertriglyceridemic mice (m/z 766/885 ratio, 2.52±0.2
vs. 1.56±0.3 for hypertriglyceridemic and normotrigly-
ceridemic, respectively) and was identified by FT-ICR-MS
with side-chains 18:0 and 20:4, in which 20:4 is the
arachidonate.

In the EASI(+)-MS (Fig. 1), no DAG species were
detected in the m/z range 600 to 700 (not shown).
Moreover, very low intensities of FFA in the m/z 150–
400 range (not shown) were detected in the EASI(−)-MS
spectra (Fig. 2). These show preferential ionization of
phosphatidylethanolamine lipids. To ascertain the FFA
composition in mice livers, the lipid extracts were
separated by HPTLC [18], which is a relatively simple
and easy to perform chromatographic separation able to
resolve each of the main simple lipids from a tissue such
as cholesterol esters, TAG, DAG, FFA, and cholesterol.
During HPTLC, lipids such as phospholipids will remain
at the origin when using hexane and diethyl ether as
mobile phase. Control experiments were conducted with

standards, and their spots were determinate by UV
exposure showing completely perfect separation of TAG
from DAG, phospholipids, and FFA (data not shown).
Figure 3a, b shows the HPTLC of the liver organic
extracts from normotriglyceridemic mice and hypertrigly-
ceridemic mice. Note that sufficient resolution leads to
good separation of the three major lipids components, in
high to low Rf order: FFA, TAG, and phospholipids.
Phospholipids are considerably more polar and therefore
display a much lower Rf. The detection of greater spot for
the TAG from hypertriglyceridemic liver confirms the
results obtained to EASI-MS (Fig. 1).

Figure 3a, b shows EASI(−)-MS of the highest Rf spot
(FFA) of normotriglyceridemic and hypertriglyceridemic
livers. As expected, hypertriglyceridemic spectrum
(Fig. 3b) displays a much more diverse profile of FFA
compared to normotriglyceridemic (Fig. 3a). The main ions
detected were the [FFA–H]− ions of m/z 253, 255, 281, and
283, which correspond to palmitoleic, palmitic, oleic, and
stearic acids (Table 2), respectively, with predominant
signal from palmitic acid. Using the most intense FFA ion
of m/z 255 as reference, a clear increase in the intensity of
the FFA ions of m/z 253, 269 (margaric acid), 281, 283, and
303 (arachidonic acid) is seem in the hypertriglyceridemic
spectrum as compared with normotriglyceridemic (see also
Fig. 3c). These results demonstrate characteristic FFA
profiles in the hypertriglyceridemic liver. The ionization of
the same spot by EASI(+) detected no DAG ions, revealing
that DAG was in fact undetectable. The second and third
spots, corresponding to TAG and phosphatidylcholine,
respectively, showed very similar lipid profiles (data not
shown) as those shown in Fig. 1.

Discussion

High plasma FFA and TAG levels lead to increased uptake
of FFA into non-adipose tissues and contribute to intracel-
lular lipid accumulation. In our previous report, we have
shown higher glycerolipids accumulation in the liver of
hypertriglyceridemic mice determined by an enzymatic–
colorimetric (indirect) assay [7]. Here, EASI-MS and
HPTLC-EASI-MS analyses reinforce this result and also
revealed distinct TAG, phospholipid, and FFA profiles in
hypertriglyceridemic livers.

Higher TAG content was demonstrated by decreased
PC/TAG ratio in the hypertriglyceridemic liver spectrum.
In addition, a higher insertion of oleic acid (18:1) relative
to linoleic acid (18:2) was found to be predominant in
TAG (52C) from hypertriglyceridemic livers. Oleic acid
was also abundant in phosphatidylcholine composition of
the hypertriglyceridemic liver. In eukaryotic membranes,
phosphatidylcholine often constitutes almost 50% of the

Table 2 Assignment of the lipids forming major ions in the negative
ion mode EASI mass spectra of the normotriglyceridemic and
hypertriglyceridemic mice liver extracts

MM [M−H]- Assignmenta Elemental compositionb

254 253 FA 16:1 C16H30O2

256 255 FA 16:0 C16H32O2

270 269 FA 17:0 C17H34O2

282 281 FA 18:1 C18H34O2

284 283 FA 18:0 C18H36O2

304 303 FA 20:4 C20H32O2

741 738 PE 36:4 C41H74NO8P

743 742 PE 36:2 C41H78NO8P

765 762 PE 38:6 C43H74NO8P

767 766 PE 38:4 C43H78NO8P

789 788 PE 40:7 C45H76NO8P

791 790 PE 40:6 C45H78NO8P

886 885 PI 38:4 C47H82O13P

FA fatty acid, PE phosphatidylethanolamine, PI phosphatidylinositol
a Carbon number followed by the number of unsaturated bonds
b Identified by FT-ICR-MS
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total phospholipids. Differences in the nature and
quantity of phosphatidylcholine can influence membrane
fluidity, function, and interaction of phosphatidylcholine
with enzymes that modulate lipid metabolism. The
insertion of oleic acid into TAG and phosphatidylcholine
could reflect the distinct FFA profile found in hyper-
triglyceridemic livers, which showed elevated relative
abundances of oleic (18:1), palmitoleic (16:1), arach-
idonic (20:4), margaric (17:0), and stearic (18:0) acids. A
higher relative abundance of phosphatidylinositol (38:4),
the main phospholipid anchor of arachidonic acid in the
cell membranes, was evidenced in hypertriglyceridemic
livers. Therefore, as predicted by us, besides increased
total TAG content [7], hypertriglyceridemic livers present a
very distinct lipid profile compared with control normotri-
glyceridemic livers, independently of diet composition.

Margaric acid is a biological marker of diet fat
composition [41], since it is not produced endogenously.
It is synthesized by the bacterial flora in the rumen of

ruminants [42] and incorporated into their tissues. Rumi-
nants’ tissues are used as raw material for rodent laboratory
diets. Since both mice (hypertriglyceridemic and normo-
triglyceridemic) were subjected to the same diet, the
increased relative abundance of the margaric acid reflects
the higher food consumption of hypertriglyceridemic mice
described by us previously [8]. Increase of oleic and
palmitoleic acids has also been observed in earlier studies
in livers from patients with diet-induced hypertriglyceride-
mia and in the plasma and livers of subjects with
nonalcoholic fatty liver disease [43, 44].

The content of arachidonic acid containing phosphatidy-
linositol is an important source of cell signaling molecules
such as the second messengers phosphatidylinositol–
bisphosphate and phosphatidylinositol–triphosphate, and
the arachidonic acid derived eicosanoids. Recently, ATP-
sensitive potassium channel opening has been shown to
respond to phosphatidylinositol-4,5-bisphosphate in isolated
cardiac mitochondria [45], but its intracellular source is
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unknown. In addition, products of arachidonic acid metab-
olism by CYP2J2 epoxygenase, epoxyeicosatrienoic acids,
have been related to ATP-sensitive potassium channel
activation after cellular stress in cardiomyocytes [46]. Thus,
increased arachidonic acid-PI may be related to the described
increased activity of ATP-sensitive potassium channel ob-
served in hypertriglyceridemic mice [7, 9].

In conclusion, we showed that the EASI(±)-MS
technique, one of the simplest ambient mass spectrome-
try techniques [21], is able to determine the phosphati-
dylcholine and TAG profiles of livers with no pre-
separation steps and with very little sample preparation.
To ascertain the FFA liver profile, however, pre-separation
is required but a simple chromatographic separation by
HPTLC is sufficient to enable EASI-MS on-spot detection.
Using these techniques, representative lipid profiles of
livers from genetic hypertriglyceridemic mice were
obtained and compared with control normolipidemic mice.
We demonstrated higher incorporation of oleic acid into
phosphatidylcholine and TAG composition, higher content
of phosphatidylinositol containing arachidonic acid, and
overall distinct FFA profile in the livers of genetic
hypertriglyceridemic mice. The features of the lipid
profiles described here are certainly sufficient to change
membrane physico-chemical proprieties and hence cell or
organelles functions. In fact, liver mitochondria, spleen
lymphocytes, and whole body metabolism are significantly
increased in these hypertriglyceridemic mice. However, at this
point, it is quite difficult to anticipate which particular
alteration in lipid profile is cause or consequence of the
alterations in the metabolic profile in this hyperlipidemic
condition.
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