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Summary

Changes in mitochondrial function are intimately associated with

metabolic diseases. Here, we review recent evidence relating

alterations in mitochondrial energy metabolism, ion transport and

redox state in hypercholesterolemia and hypertriglyceridemia. We

focus mainly on changes in mitochondrial respiration, K
þ
and Ca

2þ

transport, reactive oxygen species generation and susceptibility to

mitochondrial permeability transition.
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INTRODUCTION

Until recently, the recognized roles of mitochondria

included being the site of some metabolic pathways (citric

acid cycle, fatty acid beta oxidation, and amino acid

oxidation), oxidative phosphorylation, and, exclusively in

brown adipose tissue, non-shivering thermogenesis. With

more recent work in the area, mitochondria have emerged as

a center of attention in many new functions including cell

signaling, injury, and death. Evidence has been provided that

mitochondria comprise one of the main pathways that lead to

cell death by apoptosis in vertebrate cells, since they contain

many proteins involved in the regulation of this process (for

reviews, see 1, 2). Furthermore, cell death occurring seconda-

rily to oxidative stress is often the consequence of increased

rates of reactive oxygen species (ROS) production by these

organelles (for reviews, see 3, 4).

ROS release by mitochondria is altered by changes in

metabolic rates, mitochondrial redox potential, Ca2þ levels

and the electrochemical membrane potential (4, 5). One of the

most effective mechanisms that control mitochondrial ROS

production is the uncoupling of respiration from oxidative

phosphorylation (6). Mild decreases in the inner membrane

potential resulting from this uncoupling very significantly

reduce mitochondrial ROS production. On the other hand,

high levels of Ca2þ increase mitochondrial generation of ROS,

which seems to be the result of alterations in lipid packing and

domain formation in the inner mitochondrial membrane

mediated by Ca2þ binding to cardiolipin (7), leading to

mitochondrial oxidative stress (8). Oxidative changes in inner

membrane proteins lead to a form of non-selective permeabi-

lization of this membrane (9) known as the mitochondrial

permeability transition (MPT) (10). MPT allows the entrance

of molecules up to 1.5 kDa and water, causing large amplitude

mitochondrial swelling, elimination of the proton electroche-

mical potential and oxidative phosphorylation (4, 8). Ca2þ-

induced MPT is enhanced by a variety of conditions or

compounds called inducers (for a list see 11). Most of these

inducers enhance Ca2þ-induced mitochondrial oxidative

stress, such as oxidants of pyridine nucleotides (12). Indeed,

we observed that mitochondrial Ca2þ overload in association

with an oxidized state of NADPH causes membrane protein

polymerization through thiol crosslinking and MPT (9). We

proposed (8) that these oxidative modifications of membrane

proteins are the consequence of a deficient supply of reducing

equivalents from NADPH to the antioxidant systems glu-

tathione peroxidase/reductase and thioredoxin peroxidase/

reductase that normally remove locally-generated ROS (4, 5).

When MPT occurs in a large number of mitochondria,

necrotic cell death follows. On the other hand, MPT in a

smaller fraction of mitochondria within a cell can lead to

apoptosis due to the release of pro-apoptotic factors from this

organelle (13).

Our laboratories have focused recently on alterations in

mitochondrial energy metabolism, redox state and ion
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transport in genetic models of dyslipidemias. This paper will

describe our main findings and present a brief critical review of

potential roles for this organelle in disorders of lipid

metabolism.

MITOCHONDRIAL ALTERATIONS
IN HYPERCHOLESTEROLEMIA

Low density lipoprotein (LDL) receptor mutations cause

familial hypercholesterolemia, a major autossomal dominant

disorder associated with increased risk of premature coronary

heart disease due to the development of severe atherosclerosis

(14, 15), a leading cause of death in the western world. One of

the most consistent hypotheses for atherogenesis (16) postu-

lates that this disease is triggered by LDL oxidation (17)

caused by ROS from circulating and vascular wall cells (18,

19). However, it is unclear where and how conditions of

oxidative stress are established.

Since mitochondria are the main intracellular sites of

ROS generation and are also targets for oxidative damage (8),

we analyzed oxidative metabolism of these organelles in

atherosclerosis-prone, hypercholesterolemic LDL receptor

knockout mice (20). We observed that liver, heart and brain

mitochondria and intact spleen mononuclear cells isolated

from the knockout mice presented much higher rates of ROS

production than mitochondria from control mice. In contrast

to the controls, the knockout mouse mitochondria were not

able to sustain a reduced state of matrix NADPH and, in

accordance with our earlier findings (12), had a higher

susceptibility to develop MPT (20).

We hypothesized that the lower content of reduced

nucleotides in the knockout hepatocytes could be the result

of higher rates of lipogenesis, since these cells are deficient in

taking up exogenous cholesterol. The lipogenesis/steroidogen-

esis processes consume large amounts of reducing equivalents

from NADPH. In fact, hepatic secretion rates of triglycerides

and cholesterol in vivo were about twofold higher in the

knockout than in control mice. Also, de novo synthesis of

cholesterol and other lipids measured by the 3H2O incorpora-

tion techniques were significantly increased in the livers of

knockout as compared to control mice (20). The biosynthesis

of 1 mole of cholesterol oxidizes 24 moles of NADPH (21).

Therefore, the lower content of reduced nucleotides in

knockout mitochondria probably reflected the higher output

and/or lower input of reducing equivalents between mitochon-

dria and the cytosol via substrate shuttling mechanisms.

Although this may not be the exclusive causative mechanism,

it certainly contributes to reduce the NADPH pool in the

knockout mitochondria.

Thus, the LDL receptor defect leads to two important pro-

atherogenic effects: increased extracellular levels of oxidizable

substrate (LDL) and an imbalance in cell redox processes. The

latter phenomenon is responsible for local oxidative stress,

triggering lipoprotein oxidation, which in its turn induces

mitochondrial damage (22, 23). The resulting vicious cycle

leads to cell death and progress of atherogenesis in hyperch-

olesterolemia caused by the lack of LDL receptor (see

proposed model in Fig. 1). This mitochondrially-mediated

redox imbalance (NADPH oxidation) may be an important

step in the pathogenesis of several other diseases that also have

increased lipogenesis and hyperlipidemia, such as diabetes,

nephrotic syndrome, obesity, and metabolic syndrome.

The main sources of mitochondrial NADPH in animals are

isocitrate dehydrogenase (24, 25) and the transmembrane

nicotinamide nucleotide transhydrogenase (26), which trans-

fers electrons from NADH to NADPþ using the electro-

chemical gradient as a source of energy. Interestingly,

endogenous mitochondrial levels of isocitrate and other citric

acid cycle intermediates are significantly lower in LDL

receptor knockout mice (Paim, Velho, Castilho, Oliveira and

Vercesi, unpublished observations). This is compatible with a

chronic enhanced use of isocitrate as a source of NADPH in

these mitochondria. Indeed, supplementing mitochondria

from LDL receptor knockout mice with isocitrate effectively

reverses the lack of NADPH, enhanced occurrence of MPT

and augmented ROS release observed (20). Given the

beneficial effects of isocitrate supplementation in vitro, we

tested an in vivo supplementation of knockout mice with

citrate. In fact, we observed a significant improvement in the

capacity of the knockout mitochondria to sustain the reduced

state of NADPH (Paim, Velho, Castilho, Oliveira and Vercesi,

unpublished observations), partially reversing mitochondrial

dysfunction in LDL receptor knockout cells.

Within the vascular cell wall, we propose that an enhanced

mitochondrially-originated oxidative state may contribute

toward lipoprotein oxidation, which, together with the

enhanced susceptibility to MPT-mediated cell death, may be

a causal effect in the development of atherosclerotic lesions.

Furthermore, we believe that enhanced mitochondrial oxida-

tive stress and susceptibility to MPT may be a contributing

factor toward ischemia-related tissue lesions occurring in

stroke and heart attack in familiar hypercholesterolemia.

Treatment of hypercholesterolemia with statins could

reverse these mitochondrial effects, since it decreases intracel-

lular cholesterol synthesis and preserves NADPH levels.

However, we found that isolated liver mitochondria from

LDL receptor knockout mice treated with lovastatin presented

a higher susceptibility to Ca2þ-induced MPT than untreated

animals (27). Indeed, statins induced MPT even in wild-type

animals, suggesting this is an effect of the drugs themselves.

In vitro experiments showed that lovastatin induces MPT in

isolated liver and muscle mitochondria, indicating that this

effect is unrelated to the ability of statins to reduced

cholesterol synthesis (27). The ability of statins to induce

MPT may explain statin-induced apoptosis observed in

cultured cells (28, 29). Statin-induced MPT also may be

related to the deleterious side effects of these drugs, including

myotoxicity, rhabdomyolysis and liver toxicity (30).

264 VERCESI ET AL.
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MITOCHONDRIAL ALTERATIONS IN
HYPERTRIGLYCERIDEMIA

Hypertriglyceridemia and high free fatty acid concentra-

tions are primary genetic disorders or features associated with

metabolic syndrome, obesity, diabetes and other pathological

states caused by alcoholism, drugs, hormone imbalances,

infections, etc. (31, 32). Although less clearly than for

hypercholesterolemia, hypertriglyceridemia has been estab-

lished as an independent risk factor for atherosclerotic heart

disease by a number of recent studies, regardless of the

presence of other risk factors (33). Several animal models are

available to study secondary hypertriglyceridemia. However,

few models of genetic hypertriglyceridemia have been created.

A transgenic mouse that overexpresses human apolipoprotein

CIII (34), which impairs adequate triglyceride removal from

the plasma (35), is particularly useful since it does not exhibit

altered glucose homeostasis (36) or obesity (Salerno, Patrı́cio

and Oliveira, unpublished observations).

In mice overexpressing apolipoprotein CIII, we found that

mitochondria exhibit enhanced tendencies to undergo MPT

(37). This effect may be related to enhanced levels of free fatty

acids in these animals. Free fatty acids such as arachidonic

acid may induce MPT in a manner dependent on their ability

to oxidize mitochondrial pyridine nucleotides, promoting

mitochondrial oxidative stress (38). In addition to presenting

enhanced MPT, mitochondria from mice overexpressing

apolipoprotein CIII present higher rates of respiration when

in the resting (non-phosphorylating) state. This suggests that

hypertriglyceridemia promotes mild mitochondrial uncou-

pling. Indeed, treatment of these animals with fibrates, which

reduce lipid levels, reverses this effect (37).

Many metabolic diseases have been associated with changes

in expression levels of mitochondrial uncoupling proteins

(UCP), an endogenous mild uncoupling pathway (39). Inter-

estingly, UCP expression is altered by obesity and diabetes (40,

41) and in some conditions where circulating lipid levels are

modified by hormones (42), dietary fat (43), and intravenous

heparin plus lipid infusion (44). In an attempt to determine the

mechanism through which hypertriglyceridemia enhances

mitochondrial respiration, we measured the expression levels

of uncoupling proteins in mitochondria from these mice, but

found no changes. Furthermore, these higher respiratory rates

were maintained in the presence of bovine serum albumin,

carboxyatractyloside and GDP (37), indicating the uncoupling

could not be attributable to anion transporters such as

uncoupling proteins or the adenine nucleotide carrier.

An independent pathway that promotes mild mitochon-

drial uncoupling recently described in mitochondria is the

concomitant activity of ATP-sensitive Kþ channels (mito-

KATP, which allow Kþ to enter mitochondria) and Kþ/Hþ

exchangers (which transport Kþ out and Hþ into the matrix,

Fig. 2) (45, 46). Indeed, we found that enhanced mitochondrial

Figure 1. Mitochondrial ROS release is increased in LDL receptor knockout mice. The lack of LDL receptors (LDLr) results in

a lack of cholesterol transport into the cell, stimulating intracellular lipogenesis and VLDL secretion, augmenting plasma lipid

levels. NADPH is used for lipogenesis, resulting in decreased cytoplasmic and mitochondrial NADPH/NADPþ ratios. Since

many ROS removal systems depend on NADPH as a redox source, mitochondrial ROS accumulate and are released at higher

levels. Higher ROS release under these conditions may contribute toward tissue oxidative damage, LDL oxidation and

atherosclerosis.

MITOCHONDRIAL ENERGY METABOLISM AND REDOX STATE 265
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Kþ cycling occurred in hypertriglyceridemic mice (47).

Interestingly, the higher mitochondrial respiratory rates

induced by mitoKATP activation in hypertriglyceridemia were

reflected also at the tissue and animal levels (47). This suggests

that the activity of mitoKATP induces a hypermetabolic state

in hyperlipidemic animals, which may compensate at least

partially for their higher levels of circulating lipids. This

enhanced metabolic state promoted by mitoKATP may explain

why these mice gain little weight and present low efficiency of

ingested food conversion (47). Our results may also contribute

to explain the higher energy expenditure and lower net

efficiency for energy gain in rats submitted to diets rich in

lipids (48, 49).

The reasons for mitoKATP activation in hyperlipidemia

are still undetermined. We hypothesize that the enhanced

activity of this channel may be related to augmented levels of

ROS in hypertriglyceridemia (see Fig. 2; 50). MitoKATP is a

redox-sensitive channel (51), and presents significant increases

in activity when mitochondrial ROS release levels are

enhanced (52). We are currently investigating if broad-

spectrum antioxidants reverse the activation of mitoKATP in

apolipoprotein CIII-overexpressing animals. Interestingly,

because mitoKATP activity decreases ROS release by promot-

ing mild mitochondrial uncoupling (52), this channel may

contribute toward preventing oxidative tissue damage in this

dyslipidemia.

CONCLUDING REMARKS

Given their central role in energy metabolism, it is not

surprising that changes in mitochondrial function are asso-

ciated with metabolic diseases such as dyslipidemias. Indeed,

the role of mitochondria in these disorders adds to the

numerous roles of these organelles in cell pathophysiology

currently under investigation. We hope that a more detailed

understanding of changes in mitochondrial energy metabo-

lism, redox state and ion transport that occur in dyslipidemias

will contribute toward a more thorough comprehension of

these pathologies, pointing toward mechanisms in which they

can be more effectively controlled.
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