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1   |   INTRODUCTION

Duchenne muscular dystrophy (DMD) is the most se-
vere and frequent form of muscular dystrophy, affect-
ing 1 in 5000 male births.1 DMD is an X-linked disorder 
characterized by a progressive and irreversible degen-
erative of the skeletal muscles2 due to the fragility of 

the muscle fibre owing to the absence of the dystrophin 
protein and alteration of the dystrophin-glycoprotein 
complex (DGC).3,4

The mdx mouse (X chromosome-linked muscular dys-
trophy) is one of the most widely used experimental models 
to understand aspects of the biology of dystrophic skele-
tal muscles and the mechanisms of DMD.5 This model is 
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Abstract
Duchenne muscular dystrophy (DMD) is the most severe and frequent form of 
muscular dystrophy. The mdx mouse is one of the most widely used experimen-
tal models to understand aspects of the biology of dystrophic skeletal muscles 
and the mechanisms of DMD. Oxidative stress and apoptosis are present in early 
stages of the disease in mdx mice. The high production of reactive oxygen species 
(ROS) causes activation of apoptotic death regulatory proteins due to DNA dam-
age and breakdown of nuclear and mitochondrial membranes. The quadriceps 
(QUA) muscle of the mdx mouse is a good tool to study oxidative events. Previous 
studies have demonstrated that cilostazol exerts an anti-oxidant effect by decreas-
ing the production of reactive oxygen species (ROS). The present study aimed 
to evaluate the ability of cilostazol to modulate oxidative stress and apoptosis in 
the QUA muscle of mdx mice. Fourteen-day-old mdx mice received cilostazol or 
saline for 14 days. C57BL/10 mice were used as a control. In the QUA muscle of 
mdx mice, cilostazol treatment decreased ROS production (−74%), the number of 
lipofuscin granules (−47%), lipid peroxidation (−11%), and the number of apop-
totic cells (−66%). Thus cilostazol showed anti-oxidant and anti-apoptotic action 
in the QUA muscle of mdx mice.
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deficient in dystrophin production, but its phenotype is 
milder than DMD.6 Therapeutic interventions initiated in 
the pre-necrotic stage7,8 provide a good window of obser-
vation and prevention of events triggered by the absence of 
dystrophin in the animal, such as exacerbation of inflam-
mation, extensive myonecrosis, and oxidative stress.9

Oxidative stress is present in the primary stages of 
muscle degeneration in dystrophic muscle.9 Studies have 
shown a significant increase in the production of reactive 
oxygen species (ROS), sarcolemma lipid peroxidation, and/
or imbalance in antioxidant enzymes in early stages of the 
disease in mdx mice and in patients with dystrophy.10,11 
Increases in oxidative indicators have been observed even 
before 4 weeks of age in mdx mice and 2 years of age in 
patients with dystrophy.10 The high ROS production in dys-
trophic muscle is a result of intracellular accumulation of 
calcium ions and their abnormal uptake by mitochondria.12

The reduced form of molecular oxygen, the superoxide 
anion (O2

∙−), is a prominent ROS, formed from incomplete 
transfer of electrons from complex I to complex III of the 
mitochondrial electron transport chain.13 O2

∙− can undergo 
dismutation spontaneously or by the enzymatic action of 
superoxide dismutase (SOD), leading to the formation of 
hydrogen peroxide (H2O2).14 From the oxidation of tran-
sition metals that are freely available in the cell, such as 
iron, H2O2 can produce the hydroxyl radical (OH•).15 This 
species causes damage to DNA, RNA, proteins, lipids, and 
nuclear and mitochondrial membranes. In DNA, it affects 
both nitrogenous bases and deoxyribose by abstracting one 
of the hydrogen atoms and usually leads to DNA strand 
breakage. When produced close to a membrane, lipids can 
be oxidized and initiate a chain reaction with free radicals 
leading to membrane lipid peroxidation, producing the by-
product 4-hydroxy-2-nonenal (4-HNE).15,16 DNA damage 
causes activation of apoptotic death regulatory proteins as 
well as the transcription factors necessary for the expres-
sion of pro- and anti-apoptotic genes.17,18 Anti-oxidant en-
zymes (SOD, catalase [CAT], and glutathione peroxidase 
[GPx]) act by reducing the rate of free radical generation 
and/or by eliminating them.19 Normally, these enzymes 
act efficiently and manage to control and restore the redox 
balance; however, under exhaustion conditions (as in mdx 
mice) a state of oxidative stress is created.20

Opening of the mitochondrial permeability transition 
pore (MPTP) requires pro-apoptotic proteins, such as Bax, 
binding to specific sites in the mitochondrial membrane, 
voltage-gated ion channels, and other proteins.21,22 The 
MPTP directly impairs mitochondrial selectivity and cal-
cium homeostasis and allows the release of cytochrome c 
into the cytoplasm; this molecule is the main inducer of 
the apoptotic cascade via caspase activation.21–24 Although 
necrosis is the most relevant type of cell death in dystro-
phic muscle tissue, the initial signs of histologically de-
tectable muscle cell death in the mdx mouse show that 

myonuclear apoptosis precedes necrosis.25,26 Moorwood 
and Barton27 demonstrated that caspase-12 ablation pre-
serves muscle function and reduces degeneration in the 
long digital extensor muscle of mdx mice and related 
these effects to reduced apoptosis.

Type II muscle fibres (fast fibres) are preferentially 
affected in DMD.28 Thus, the diaphragm (DIA) and mus-
cles of the limbs, such as the quadriceps (QUA), are more 
susceptible to damage, presenting a greater inflammatory 
infiltrate, a large number of fibres with a central nucleus, 
and extensive myonecrosis.29–32 This factor is involved in 
determining the muscles and experimental strategies in-
volving the mdx mouse. In addition, the QUA muscle of 
the mdx mouse is a good tool to study oxidative events. 
This muscle presents important changes in the activity of 
all enzymes linked to the Krebs cycle and to the mitochon-
drial respiratory chain, as well as a reduction in maximal 
respiratory activity and a reduction in inner mitochon-
drial membrane proteins.33,34 Furthermore, Hughes 
et al.35 demonstrated that maximum H2O2 emission in the 
QUA muscle is dependent on mitochondrial density or the 
abundance of respiratory chain complexes, unlike the DIA 
and gastrocnemius muscle, and is the only muscle to ex-
hibit decreased mitochondrial calcium retention capacity, 
which indicates increased sensitivity to MPTP opening.

Cilostazol (6-[4-(1-cyclohexyl-1H-tetrazol-5-yl)butoxy]-
3,4-dihydro-2(1H)-quinolinone) is a potent antiplatelet, an-
tithrombotic, and vasodilatory agent that acts by inhibiting 
the enzyme phosphodiesterase type 3A (PDE-3) and thus 
increasing the levels of 3′,5′-cyclic adenosine monophos-
phate (cAMP), present in smooth muscle cells.36 However, 
more and more studies have demonstrated the anti-oxidant 
effect (radical scavenger) of cilostazol to decrease O2

∙− and 
thus eliminate OH•.37–39 Cilostazol also demonstrated 
this effect in the DIA of mdx mouse, including reducing 
inflammatory and degenerative indicators and improving 
muscle strength.40

Based on the above information, evaluation of the anti-
oxidant effect of cilostazol in dystrophic tissue can be better 
understood when applied to the alterations in the structural 
and functional patterns of the mitochondria of the QUA 
muscle in the mdx mouse. Therefore, the present study 
aimed to evaluate the ability of cilostazol administration 
to modulate the high ROS production, oxidative stress, and 
programmed cell death in the QUA muscle of mdx mice.

2   |   MATERIALS AND METHODS

2.1  |  Animals

Male and female C57BL/10 (C57BL/10ScCr/PasUnib) and 
mdx mice (C57BL/10-Dmdmdx/PasUnib) were used in this 
study. Care of the mice was based on the guidelines of the 
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Brazilian College for Animal Experimentation (COBEA) and 
institutional guidelines. Cilostazol treatment was started on 
postnatal day 14 prior to muscle degeneration-regeneration 
cycles.41 The institutional Ethics Committee on the Use of 
Animals (CEUA) of State University of Campinas (UNICAMP; 
process #3115-1) approved the research protocol.

2.2  |  Cilostazol administration

For 14 days, 14-day-old mdx mice (mdxC group, n = 25) re-
ceived 100 mg cilostazol/kg body weight daily (Eurofarma®) 
diluted in 0.05 ml of saline via oral gavage. Control 14-day-old 
mdx mice (mdxS group, n = 16) received only saline. The an-
imals were weighed daily to adjust the drug dose. C57BL/10 
mice (Ctrl group) that did not receive treatment and used as 
control. The person doing the analysis was not blinded as to 
the treatment that each mouse had received.

2.3  |  Histopathological analysis (n = 5)

After the 14-day treatments, the animals were anaesthe-
tised intraperitoneally with a lethal dose of 2% xylazine 
hydrochloride solution (Vyrbaxyl, Virbac) and keta-
mine hydrochloride (Francotar, Virbac) (1:1 at a dose of 
0.1  ml/30 g body weight) and perfused with phosphate-
buffered saline (PBS). The QUA muscle was removed, 
frozen in isopentane cooled to −159°C by liquid nitrogen 
and stored in a biofreezer at −70°C. The muscles were 
sectioned with a cryostat kept at −23°C; 8-μm-thick trans-
verse sections were collected on a slide. Six slides with 
about 12 sections each were obtained from each animal 
and used in the analyses described below.

2.3.1  |  Lipofuscin analysis

The number of autofluorescent lipofuscin granules was 
quantified. The muscle samples (n  =  5 per group) were 
analysed using unfixed 8 μm-thick transverse sections of 
the QUA muscle. Quantification was performed with an 
inverted fluorescence microscope (Nikon, Eclipse TS100/
TS100F) using the NIS-elements AR Advances Research 
software in each cross-section (4–5 sections per muscle).

2.3.2  |  Dihydroethidium (DHE) 
reaction analysis

To determine ROS (specifically O2
∙−), the QUA muscle 

cross-sections were incubated with DHE.42 The QUA 
sections were incubated with 5  μl of the dihydroethid-
ium (DHE) in PBS, at 37°C for 30 min, washed with PBS, 

and mounted in DABCO (mounting medium for fluo-
rescence microscopy; Sigma). DHE staining appears as 
a bright red emission when viewed with a fluorescence 
microscope. The fluorescence area (%) of the DHE was 
obtained (pixel limit: 70–255 wavelength).

2.3.3  |  Terminal deoxynucleotidyl transferase 
dUTP nick end labeling (TUNEL) assay to 
detect apoptotic cells

Apoptotic cells were detected with the TUNEL method 
(Dead End™ Fluorometric TUNEL System, Promega), ac-
cording to the manufacturer's instructions. Apoptotic cells 
were identified and captured by an inverted fluorescence 
microscope (Nikon®, Eclipse TS100/TS100F). Ten random 
fields for each animal were captured at 40× magnifica-
tion. The quantification was determined by the number 
of TUNEL-positive fluorescent nuclei divided by the total 
number of DAPI-counterstained nuclei. The result is ex-
pressed as the relative frequency of positive fluorescent 
labeling in all experimental groups.43

2.4  |  Western blot analysis (n = 6)

After euthanasia of the animals as described above, the 
left and right QUA muscles were collected, pooled and 
homogenized (1% Triton, 10 mM sodium pyrophosphate, 
100 mM NaF, 10 μg/ml aprotinin, 1 mM phenylmethylsul-
fonyl fluoride, and 0.25 mM Na3VO4). Cell detritus was re-
moved by centrifugation at 13,800 g for 20 min at 4°C and 
the supernatant was subjected to sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS-PAGE) gel elec-
trophoresis. The Bradford method was used to determine 
the total protein content. Total protein from cell lysate 
(30 μg) was stacked on 6%–15% SDS-polyacrylamide gels.

The proteins were transferred from gels to nitrocel-
lulose membranes by electrophoresis (Mini Trans-Blot 
electrophoretic transfer cell, Bio-Rad). Membranes 
were incubated with the appropriate primary antibod-
ies overnight at 4°C with gentle shaking: goat poly-
clonal anti-4-HNE (Santa Cruz Biotechnology), mouse 
monoclonal anti-anti-catalase (Sigma-Aldrich), rabbit 
anti-SOD-2 (Sigma-Aldrich), and rabbit polyclonal anti-
glyceraldehyde-3-phosphate dehydrogenase (GAPDH, 
Santa Cruz Biotechnology). The membranes were then 
incubated with the appropriate secondary antibody, anti-
mouse or anti-rabbit IgG conjugated to peroxidase (KPL), 
for 2  h at room temperature. Membranes were washed 
three times for 10  min each with Tris buffered saline-
Tween 20 (TBST) after both incubations. GAPDH was 
used as a control protein loading. Protein bands were visu-
alized using the Clarity Western ECL Substrate (Bio-Rad). 
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genetools software (SynGene) was used for band inten-
sities quantification.

2.5  |  Biochemical analysis (n = 5)

After euthanasia, the left and right QUA muscles were re-
moved, pooled and homogenized in a tissue homogenizer 
with 1 ml of PBS, immediately immersed in liquid nitro-
gen, and stored in a biofreezer (−70°C). Subsequently, the 
samples were used to quantify enzymatic activities and 
the reduced glutathione (GSH) content.

2.5.1  |  SOD1 activity

SOD1 activity was evaluated based on reducing nitroblue 
tetrazolium using a xanthine–xanthine oxidase system, 
that is, superoxide generation, which can be measured by 
the absorbance at 420 nm.44 The results are shown as SOD 
units per mg of protein.

2.5.2  |  GSH content

The total GSH content was analysed with Ellman's reac-
tion using 5′5′-dithio-bis-2-nitrobenzoic acid (DTNB) as 
per Anderson.45 The yellow colour intensity was read at 
412 nm. The results are shown as nmol per mg of protein.

2.5.3  |  GPx activity

Quantification of the GPx activity was based on the de-
crease in absorbance at 365 nm induced by 0.25 mM H2O2 
with GSH (10 mM), NADPH, (4 mM), and 1  U of glu-
tathione reductase (GR).46 The results are shown as nmol 
per min per mg of protein.

2.5.4  |  GR activity

GR activity was quantified as described by Carlberg 
and Mannervick,47 based on the decrease in absorb-
ance at 340 nm induced by oxidized glutathione (GSSG) 
with NADPH in phosphate buffer (pH  7.8). Absorbance 
changes were read from 1 to 10 min. The results are shown 
as nmol per min per mg of protein.

2.6  |  Statistical analysis

All the results are presented as the mean ± standard devia-
tion (SD). Comparisons were carried out using one-way 

analysis of variance (ANOVA), followed by Tukey's post hoc 
t-test. p ≤ 0.05 was considered to be statistically significant.

3   |   RESULTS

3.1  |  Effect of cilostazol on oxidative 
stress in the QUA muscle

There was an intense area of DHE fluorescence, char-
acterizing a significant increase in the production of 
ROS, in the mdxS group compared with the Ctrl group 
(Figure  1). After the experimental treatments, there 
was a reduction in ROS production in the mdxC group 
(about 56%) relative to the mdxS group (Figure 1).

The mdxS group showed a significant increase in the 
number of lipofuscin granules in the QUA muscle com-
pared with the Ctrl group, characterizing the high chronic 
oxidative pattern in dystrophic animals (Figure  1). The 
mdxC group had a significantly reduced number of lipo-
fuscin granules (about 47%) in the QUA muscle compared 
with the mdxS group (Figure 1).

4-HNE increased in the QUA muscle of the mdxS group 
(Figures 1, S1). Cilostazol treatment significantly reduced 
4-HNE levels in the mdxC group (about 11%) compared 
with the mdxS group (Figures 1, S1).

3.2  |  Effect of cilostazol on the 
antioxidant activity in the QUA muscle

CAT increased in the treated and untreated mdx groups 
compared with the Ctrl group, but there was not a signifi-
cant difference. The SOD2 levels were similar in all ex-
perimental groups (Figure 2).

The GSH levels were increased in the QUA muscle of 
the mdxS and mdxC groups compared with the Ctrl group 
(Figure 2). There were no difference in SOD1 between the 
mdxS and mdxC groups (Figure 2).

There was a significant difference in GR and GPx ac-
tivity: They increased significantly in the mdxS and mdxC 
groups compared with the the Ctrl group (Figure 2).

3.3  |  Effect of cilostazol on apoptosis 
in the QUA muscle

There was an accumulation of cells undergoing apoptosis 
in the mdxS group compared with the Ctrl group (Figure 3). 
The mdxC group had a significantly reduced number of ap-
optotic cells (about 71%) compared with the mdxS group. 
This reduction in the number of apoptotic cells observed 
in both experimental treatments indicates that the drug's 
effects are associated with oxidative stress (Figure 3).
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4   |   DISCUSSION

In the present study, the administration of cilostazol signif-
icantly reduced oxidative stress markers (DHE [measure 
of ROS], lipofuscin granules, and 4-HNE protein adducts) 
and the number of apoptotic cells in the QUA muscle of 
mdx mice. The interaction between these two events high-
lights the metabolic complications of dystrophic muscle 
fibres, given that apoptosis induced by ROS overproduc-
tion is one of the results of mitochondrial dysfunction.48 
Consistent with these findings, exercised mdx mice treated 
with tempol, a potent anti-oxidant, showed increased lev-
els of mitochondrial biogenesis regulators.49 We chose 
to investigate the interaction of cilostazol against oxida-
tive stress and apoptosis in the QUA muscle of mdx mice 
because it presents metabolic alterations that have been 
strongly established in the literature.33–35 Although the 
TUNEL method is often considered the gold standard for 

the detection of apoptosis in situ due to its high sensitiv-
ity, the false positivity of TUNEL against programmed ne-
crotic cell death (necroptotic cells) should be considered 
in the present study.50,51 Considering that the basal lamina 
was not identified in the present method, it is important 
to make it clear that TUNEL+ nuclei may be satellite cells 
or myonuclei, but may also be fibrocytes, fibroadipogenic 
precursor cells (FAPs) and/or macrophages, that are pre-
sent in dystrophic muscle.52,53

Oxidative stress and apoptosis are present in early stages 
of the disease in mdx mice.9,10,25,26 The use of anti-oxidants 
such as N-acetylcysteine, tempol, green tea, or ascorbic acid 
in mdx mice <30 days of age demonstrates beneficial results 
in the disease phenotype by decreasing muscle weakness, 
inflammation, and dystrophic tissue degeneration.54–58 We 
demonstrated previously that cilostazol administration 
attenuated markers of oxidative stress (DHE and 4-HNE) 
and inflammation in the DIA of mdx mice associated with 

F I G U R E  1   (A) Quadriceps (QUA) cross-sections showing dihydroethidium (DHE, n = 5 each group) fluorescence and autofluorescent 
lipofuscin granules (LIPO, white arrow, n = 5 each group) in C57BL/10 mice (Ctrl), saline-treated mdx mice (mdxS), and cilostazol-treated 
mdx mice (mdxC). (B) The graph shows the DHE staining area (%) in the Ctrl, mdxS, and mdxC groups. (C) The graph shows the number of 
lipofuscin granules × 10−4/mm3 in the Ctrl, mdxS, and mdxC groups. (D) Western blotting analysis (n = 6 each group) of 4-hydroxynonenal 
(4-HNE)-protein adducts. Bands corresponding to protein adducts formed by the reaction of 4-HNE with nucleophilic protein residues (top 
panel) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH; used as a loading control) (bottom row) are shown. (E) The graphs show 
protein levels in the crude extracts of QUA muscle from the Ctrl, mdxS and mdxC groups. All values are expressed as mean ± standard 
deviation (SD). **p ≤ 0.001 compared with the Ctrl group, ***p ≤ 0.0001 compared with the Ctrl group (Student's t-test). #p ≤ 0.05 compared 
with the mdxS group, ##p ≤ 0.001 compared with the mdxS group, ###p ≤ 0.0001 compared with the mdxS group (Student's t-test). The scale 
bar is 100 μm.
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preservation of muscle strength.40 In cardiomyocytes from 
rats under oxidative stress, cilostazol prevented mitochon-
drial dysfunction by attenuating cardiac mitochondrial 
edema, ROS production, and changes in the mitochondrial 
membrane potential of cardiac cells.59 Comparatively, the 
anti-oxidant effect of cilostazol is as effective as other classic 
anti-oxidant compounds already tested in the mdx model 
in terms of improving the dystrophic phenotype. Tempol, a 
potent anti-oxidant, has been shown to reduce myonecrosis 
and inflammation, associated with a reduction in oxidative 
stress markers such as DHE, lipofuscin granule count, and 
4-HNE in the diaphragm muscle of mdx mice.54,55,60 The 
use of the anti-oxidant N-acetylcysteine had a beneficial ef-
fect on dystrophic muscle tissue by reducing indicators of 
oxidative stress, inflammation and fibrosis.42,61,62 Similarly, 
green tea extract as well as its isolated compounds decreased 
muscle necrosis in mdx mice via antioxidant pathways.63–65 
These studies support our results in terms of attenuation of 
oxidative stress markers in the QUA muscle of mdx mice; 
however, the exact mechanism is unclear.

Dystrophic muscles present functional ischemia gen-
erated by low production of nitric oxide (NO) in skeletal 
and endothelial muscle cells.66–70 Cilostazol has an effect 
on vascular smooth muscle cells, which from both the in-
crease in cAMP, and from the inhibition of PDE-3, is able 
to promote the relaxation of the endothelium, and as a 
consequence, vasodilation.36 With the lack of blood flow 
and oxygen supply, there is a decrease in ATP production, 
which induces anaerobic metabolism, producing a lower 
level of anti-oxidant agents in cells.71 Therefore, it is pos-
sible that vasodilation contributes, in part, to the improve-
ment of the redox state of dystrophic muscle. However, in 
the present study, changes in anti-oxidant enzymes and 
GSH content in the QUA muscle of mdx mice were not 
observed after a 14-day treatment with cilostazol.

The beneficial effects of cilostazol, such as antiplatelet 
and anti-inflammatory properties, are attributed to activa-
tion of AMP-activated protein kinase (AMPK).72–74 AMPK 
plays an important role in regulating the energy balance 
of eukaryotic cells: It monitors changes in the ATP level, 

F I G U R E  2   (A) Western blotting analysis (n = 6 each group) of catalase (CAT) and superoxide dismutase 2 (SOD2) content in 
the quadriceps (QUA) from C57BL/10 mice (Ctrl), saline-treated mdx mice (mdxS), and cilostazol-treated mdx mice (mdxC). Bands 
corresponding to proteins (top and middle row) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH; used as a loading control) 
(bottom row) are shown. The graphs show: protein levels of (B) CAT and (C) SOD2; biochemical analysis (n = 5 each group) of content of 
(D) reduced glutathione (GSH) and (F) superoxide dismutase 1 (SOD1), and activity of (E) glutathione peroxidase (GPx) and (G) glutathione 
reductase (GR) in the crude extracts of QUA muscle from the Ctrl, mdxS, and mdxC groups. All values are expressed as mean ± standard 
deviation (SD). *p ≤ 0.05 compared with the Ctrl group, ***p ≤ 0.0001 compared with the Ctrl group (Student's t-test).
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increasing the rate of ATP production pathways and/or 
decreasing the rate of ATP utilization pathways, as well 
as regulating the biogenesis and degradation of mitochon-
dria.75,76 In skeletal muscle, AMPK transmits a part of 
the signal by which muscle contraction increases glucose 
uptake into the cell.77 Studies have described the radical 
scavenger action and apoptotic cell death of cilostazol 
by AMPK activation and its effect on energy homeosta-
sis and mitochondrial protection.37,78 Supporting this, 
our results showed those effects without influencing the 
anti-oxidant system, consistent with previous observa-
tion in the DIA.40 Studies indicate an increase in GPx and 
SOD-1 in the mdx mouse, but in the pre-necrotic period 
of muscle degeneration.79 In agreement with our results, 
cilostazol administration significantly reduced malondi-
aldehyde, an indicator of lipid peroxidation, but did not 
significantly alter the activity of the anti-oxidant enzymes 
SOD and CAT (catalase) in an experimental model of aor-
tic occlusion.37

Chronic AMPK stimulation in mdx mice has produced 
beneficial phenotypic changes in dystrophic skeletal mus-
cle, such as a shift from type II (fast and glycolytic) my-
ofibers to type I (slow and oxidative), accompanied by 
increased utrophin expression and improved stability of 

the sarcolemma.80 Abou-Samra et al.81 administered adi-
ponectin as an AMPK activator and observed a reduction 
in inflammation, oxidative stress, and muscle damage, 
associated with increased expression of myogenic differ-
entiation markers, as well as upregulation of utrophin 
in the tibialis anterior muscle of mdx mice, results that 
are consistent with our findings. Similarly, studies have 
shown that suppression of apoptosis is related to activa-
tion of the AMPK pathway.82–84 AMPK pathway activation 
via cilostazol protected rat hepatocytes against alcohol-
induced apoptosis.85 Therefore, based on our findings 
and other studies, we suggest that the anti-oxidant action 
of cilostazol and the prevention of apoptosis in the QUA 
muscle observed in the present study may be related to 
the activation of AMPK and to regulatory pathways of mi-
tochondrial biogenesis. Future studies are needed to test 
this hypothesis.

Based on the results, it was possible to verify a potent 
anti-oxidant action of cilostazol by reducing markers of 
oxidative stress and prevention of apoptosis in the QUA 
muscle of mdx mice, which was not associated with en-
dogenous enzymatic anti-oxidant regulation. The atten-
uation of oxidative stress and programmed cell death in 
the QUA muscle evidences a possible regulation of the 

F I G U R E  3   (A) Quadriceps (QUA) 
cross-sections showing apoptotic cells 
(terminal deoxynucleotidyl transferase 
dUTP nick end labeling [TUNEL] 
positive, white arrow; DAPI positive, 
white arrowhead. n = 5 each group) in 
C57BL/10 mice (Ctrl), saline-treated mdx 
mice (mdxS), and cilostazol-treated mdx 
mice (mdxC). (B) The graph shows the 
relative frequency of positive fluorescent 
labeling to apoptotic cells (%) in the Ctrl, 
mdxS, and mdxC groups. (C) All values 
are expressed as the mean ± standard 
deviation (SD). *p ≤ 0.05 compared with 
the Ctrl group, ***p ≤ 0.0001 compared 
with the Ctrl group (Student t-test). 
###p ≤ 0.0001 compared with the mdxS 
group (Student t-test). The scale bar is 
50 μm.
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metabolic pattern of the dystrophic cell; however, future 
studies are still necessary to investigate this relationship. 
Cilostazol represents a potential pharmacological strategy 
for the treatment of DMD.
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