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1 	 | 	 INTRODUCTION

Duchenne	 muscular	 dystrophy	 (DMD)	 is	 the	 most	 se-
vere	 and	 frequent	 form	 of	 muscular	 dystrophy,	 affect-
ing	1	in	5000	male	births.1	DMD	is	an	X-	linked	disorder	
characterized	 by	 a	 progressive	 and	 irreversible	 degen-
erative	 of	 the	 skeletal	 muscles2	 due	 to	 the	 fragility	 of	

the	muscle	fibre	owing	to	the	absence	of	the	dystrophin	
protein	 and	 alteration	 of	 the	 dystrophin-	glycoprotein	
complex	(DGC).3,4

The	mdx	mouse	(X	chromosome-	linked	muscular	dys-
trophy)	is	one	of	the	most	widely	used	experimental	models	
to	 understand	 aspects	 of	 the	 biology	 of	 dystrophic	 skele-
tal	muscles	and	the	mechanisms	of	DMD.5	This	model	 is	
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Abstract
Duchenne	muscular	dystrophy	(DMD)	is	the	most	severe	and	frequent	form	of	
muscular	dystrophy.	The	mdx	mouse	is	one	of	the	most	widely	used	experimen-
tal	 models	 to	 understand	 aspects	 of	 the	 biology	 of	 dystrophic	 skeletal	 muscles	
and	the	mechanisms	of	DMD.	Oxidative	stress	and	apoptosis	are	present	in	early	
stages	of	the	disease	in	mdx	mice.	The	high	production	of	reactive	oxygen	species	
(ROS)	causes	activation	of	apoptotic	death	regulatory	proteins	due	to	DNA	dam-
age	and	breakdown	of	nuclear	and	mitochondrial	membranes.	The	quadriceps	
(QUA)	muscle	of	the	mdx	mouse	is	a	good	tool	to	study	oxidative	events.	Previous	
studies	have	demonstrated	that	cilostazol	exerts	an	anti-	oxidant	effect	by	decreas-
ing	 the	 production	 of	 reactive	 oxygen	 species	 (ROS).	 The	 present	 study	 aimed	
to	evaluate	the	ability	of	cilostazol	to	modulate	oxidative	stress	and	apoptosis	in	
the	QUA	muscle	of	mdx	mice.	Fourteen-	day-	old	mdx	mice	received	cilostazol	or	
saline	for	14	days.	C57BL/10	mice	were	used	as	a	control.	In	the	QUA	muscle	of	
mdx	mice,	cilostazol	treatment	decreased	ROS	production	(−74%),	the	number	of	
lipofuscin	granules	(−47%),	lipid	peroxidation	(−11%),	and	the	number	of	apop-
totic	cells	(−66%).	Thus	cilostazol	showed	anti-	oxidant	and	anti-	apoptotic	action	
in	the	QUA	muscle	of	mdx	mice.
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deficient	 in	 dystrophin	 production,	 but	 its	 phenotype	 is	
milder	than	DMD.6	Therapeutic	 interventions	initiated	in	
the	pre-	necrotic	stage7,8	provide	a	good	window	of	obser-
vation	and	prevention	of	events	triggered	by	the	absence	of	
dystrophin	in	the	animal,	such	as	exacerbation	of	inflam-
mation,	extensive	myonecrosis,	and	oxidative	stress.9

Oxidative	 stress	 is	 present	 in	 the	 primary	 stages	 of	
muscle	degeneration	 in	dystrophic	muscle.9	Studies	have	
shown	a	significant	increase	in	the	production	of	reactive	
oxygen	species	(ROS),	sarcolemma	lipid	peroxidation,	and/
or	imbalance	in	antioxidant	enzymes	in	early	stages	of	the	
disease	 in	 mdx	 mice	 and	 in	 patients	 with	 dystrophy.10,11	
Increases	in	oxidative	indicators	have	been	observed	even	
before	 4	weeks	 of	 age	 in	 mdx	 mice	 and	 2	years	 of	 age	 in	
patients	with	dystrophy.10	The	high	ROS	production	in	dys-
trophic	muscle	is	a	result	of	intracellular	accumulation	of	
calcium	ions	and	their	abnormal	uptake	by	mitochondria.12

The	reduced	form	of	molecular	oxygen,	the	superoxide	
anion	(O2

∙−),	is	a	prominent	ROS,	formed	from	incomplete	
transfer	of	electrons	from	complex	I	to	complex	III	of	the	
mitochondrial	electron	transport	chain.13	O2

∙−	can	undergo	
dismutation	spontaneously	or	by	 the	enzymatic	action	of	
superoxide	 dismutase	 (SOD),	 leading	 to	 the	 formation	 of	
hydrogen	 peroxide	 (H2O2).14	 From	 the	 oxidation	 of	 tran-
sition	 metals	 that	 are	 freely	 available	 in	 the	 cell,	 such	 as	
iron,	H2O2	can	produce	the	hydroxyl	radical	(OH•).15	This	
species	causes	damage	to	DNA,	RNA,	proteins,	lipids,	and	
nuclear	and	mitochondrial	membranes.	In	DNA,	it	affects	
both	nitrogenous	bases	and	deoxyribose	by	abstracting	one	
of	 the	 hydrogen	 atoms	 and	 usually	 leads	 to	 DNA	 strand	
breakage.	When	produced	close	to	a	membrane,	lipids	can	
be	oxidized	and	initiate	a	chain	reaction	with	free	radicals	
leading	to	membrane	lipid	peroxidation,	producing	the	by-	
product	 4-	hydroxy-	2-	nonenal	 (4-	HNE).15,16	 DNA	 damage	
causes	activation	of	apoptotic	death	regulatory	proteins	as	
well	as	 the	 transcription	 factors	necessary	 for	 the	expres-
sion	of	pro-		and	anti-	apoptotic	genes.17,18	Anti-	oxidant	en-
zymes	 (SOD,	 catalase	 [CAT],	 and	 glutathione	 peroxidase	
[GPx])	act	by	reducing	 the	rate	of	 free	radical	generation	
and/or	 by	 eliminating	 them.19	 Normally,	 these	 enzymes	
act	efficiently	and	manage	to	control	and	restore	the	redox	
balance;	however,	under	exhaustion	conditions	(as	in	mdx	
mice)	a	state	of	oxidative	stress	is	created.20

Opening	of	the	mitochondrial	permeability	transition	
pore	(MPTP)	requires	pro-	apoptotic	proteins,	such	as	Bax,	
binding	to	specific	sites	in	the	mitochondrial	membrane,	
voltage-	gated	 ion	 channels,	 and	 other	 proteins.21,22	 The	
MPTP	directly	impairs	mitochondrial	selectivity	and	cal-
cium	homeostasis	and	allows	the	release	of	cytochrome	c	
into	the	cytoplasm;	this	molecule	is	the	main	inducer	of	
the	apoptotic	cascade	via	caspase	activation.21–	24	Although	
necrosis	is	the	most	relevant	type	of	cell	death	in	dystro-
phic	 muscle	 tissue,	 the	 initial	 signs	 of	 histologically	 de-
tectable	 muscle	 cell	 death	 in	 the	 mdx	 mouse	 show	 that	

myonuclear	 apoptosis	 precedes	 necrosis.25,26	 Moorwood	
and	Barton27	demonstrated	that	caspase-	12	ablation	pre-
serves	 muscle	 function	 and	 reduces	 degeneration	 in	 the	
long	 digital	 extensor	 muscle	 of	 mdx	 mice	 and	 related	
these	effects	to	reduced	apoptosis.

Type	 II	 muscle	 fibres	 (fast	 fibres)	 are	 preferentially	
affected	in	DMD.28	Thus,	the	diaphragm	(DIA)	and	mus-
cles	of	the	limbs,	such	as	the	quadriceps	(QUA),	are	more	
susceptible	to	damage,	presenting	a	greater	inflammatory	
infiltrate,	a	large	number	of	fibres	with	a	central	nucleus,	
and	extensive	myonecrosis.29–	32	This	factor	is	involved	in	
determining	the	muscles	and	experimental	strategies	 in-
volving	the	mdx	mouse.	In	addition,	the	QUA	muscle	of	
the	 mdx	 mouse	 is	 a	 good	 tool	 to	 study	 oxidative	 events.	
This	muscle	presents	important	changes	in	the	activity	of	
all	enzymes	linked	to	the	Krebs	cycle	and	to	the	mitochon-
drial	respiratory	chain,	as	well	as	a	reduction	in	maximal	
respiratory	 activity	 and	 a	 reduction	 in	 inner	 mitochon-
drial	 membrane	 proteins.33,34	 Furthermore,	 Hughes	
et	al.35	demonstrated	that	maximum	H2O2	emission	in	the	
QUA	muscle	is	dependent	on	mitochondrial	density	or	the	
abundance	of	respiratory	chain	complexes,	unlike	the	DIA	
and	gastrocnemius	muscle,	and	is	the	only	muscle	to	ex-
hibit	decreased	mitochondrial	calcium	retention	capacity,	
which	indicates	increased	sensitivity	to	MPTP	opening.

Cilostazol	 (6-	[4-	(1-	cyclohexyl-	1H-	tetrazol-	5-	yl)butoxy]-	
3,4-	dihydro-	2(1H)-	quinolinone)	is	a	potent	antiplatelet,	an-
tithrombotic,	and	vasodilatory	agent	that	acts	by	inhibiting	
the	enzyme	phosphodiesterase	type	3A	(PDE-	3)	and	thus	
increasing	the	 levels	of	3′,5′-	cyclic	adenosine	monophos-
phate	(cAMP),	present	in	smooth	muscle	cells.36	However,	
more	and	more	studies	have	demonstrated	the	anti-	oxidant	
effect	(radical	scavenger)	of	cilostazol	to	decrease	O2

∙−	and	
thus	 eliminate	 OH•.37–	39	 Cilostazol	 also	 demonstrated	
this	effect	 in	 the	DIA	of	mdx	mouse,	 including	reducing	
inflammatory	and	degenerative	indicators	and	improving	
muscle	strength.40

Based	on	the	above	information,	evaluation	of	the	anti-	
oxidant	effect	of	cilostazol	in	dystrophic	tissue	can	be	better	
understood	when	applied	to	the	alterations	in	the	structural	
and	 functional	 patterns	 of	 the	 mitochondria	 of	 the	 QUA	
muscle	 in	 the	 mdx	 mouse.	 Therefore,	 the	 present	 study	
aimed	 to	 evaluate	 the	 ability	 of	 cilostazol	 administration	
to	modulate	the	high	ROS	production,	oxidative	stress,	and	
programmed	cell	death	in	the	QUA	muscle	of	mdx	mice.

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 Animals

Male	 and	 female	 C57BL/10	 (C57BL/10ScCr/PasUnib)	 and	
mdx	mice	(C57BL/10-	Dmdmdx/PasUnib)	were	used	in	this	
study.	Care	of	 the	mice	was	based	on	 the	guidelines	of	 the	
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Brazilian	College	for	Animal	Experimentation	(COBEA)	and	
institutional	guidelines.	Cilostazol	 treatment	was	started	on	
postnatal	 day	 14	 prior	 to	 muscle	 degeneration-	regeneration	
cycles.41	 The	 institutional	 Ethics	 Committee	 on	 the	 Use	 of	
Animals	(CEUA)	of	State	University	of	Campinas	(UNICAMP;	
process	#3115-	1)	approved	the	research	protocol.

2.2	 |	 Cilostazol administration

For	14	days,	14-	day-	old	mdx	mice	(mdxC	group,	n = 25)	re-
ceived	100	mg	cilostazol/kg	body	weight	daily	(Eurofarma®)	
diluted	in	0.05	ml	of	saline	via	oral	gavage.	Control	14-	day-	old	
mdx	mice	(mdxS	group,	n = 16)	received	only	saline.	The	an-
imals	were	weighed	daily	to	adjust	the	drug	dose.	C57BL/10	
mice	(Ctrl	group)	that	did	not	receive	treatment	and	used	as	
control.	The	person	doing	the	analysis	was	not	blinded	as	to	
the	treatment	that	each	mouse	had	received.

2.3	 |	 Histopathological analysis (n = 5)

After	the	14-	day	treatments,	 the	animals	were	anaesthe-
tised	 intraperitoneally	 with	 a	 lethal	 dose	 of	 2%	 xylazine	
hydrochloride	 solution	 (Vyrbaxyl,	 Virbac)	 and	 keta-
mine	hydrochloride	(Francotar,	Virbac)	(1:1	at	a	dose	of	
0.1  ml/30	g	 body	 weight)	 and	 perfused	 with	 phosphate-	
buffered	 saline	 (PBS).	 The	 QUA	 muscle	 was	 removed,	
frozen	in	isopentane	cooled	to	−159°C	by	liquid	nitrogen	
and	 stored	 in	 a	 biofreezer	 at	 −70°C.	 The	 muscles	 were	
sectioned	with	a	cryostat	kept	at	−23°C;	8-	μm-	thick	trans-
verse	 sections	 were	 collected	 on	 a	 slide.	 Six	 slides	 with	
about	12	 sections	each	were	obtained	 from	each	animal	
and	used	in	the	analyses	described	below.

2.3.1	 |	 Lipofuscin	analysis

The	 number	 of	 autofluorescent	 lipofuscin	 granules	 was	
quantified.	 The	 muscle	 samples	 (n  =  5	 per	 group)	 were	
analysed	using	unfixed	8 μm-	thick	transverse	sections	of	
the	QUA	muscle.	Quantification	was	performed	with	an	
inverted	fluorescence	microscope	(Nikon,	Eclipse	TS100/
TS100F)	using	 the	NIS-	elements	AR	Advances	Research	
software	in	each	cross-	section	(4–	5	sections	per	muscle).

2.3.2	 |	 Dihydroethidium	(DHE)	
reaction	analysis

To	determine	ROS	(specifically	O2
∙−),	 the	QUA	muscle	

cross-	sections	 were	 incubated	 with	 DHE.42	 The	 QUA	
sections	 were	 incubated	 with	 5  μl	 of	 the	 dihydroethid-
ium	(DHE)	in	PBS,	at	37°C	for	30	min,	washed	with	PBS,	

and	 mounted	 in	 DABCO	 (mounting	 medium	 for	 fluo-
rescence	 microscopy;	 Sigma).	 DHE	 staining	 appears	 as	
a	bright	red	emission	when	viewed	with	a	fluorescence	
microscope.	The	fluorescence	area	(%)	of	the	DHE	was	
obtained	(pixel	limit:	70–	255	wavelength).

2.3.3	 |	 Terminal	deoxynucleotidyl	transferase	
dUTP	nick	end	labeling	(TUNEL)	assay	to	
detect	apoptotic	cells

Apoptotic	 cells	 were	 detected	 with	 the	 TUNEL	 method	
(Dead	End™	Fluorometric	TUNEL	System,	Promega),	ac-
cording	to	the	manufacturer's	instructions.	Apoptotic	cells	
were	identified	and	captured	by	an	inverted	fluorescence	
microscope	(Nikon®,	Eclipse	TS100/TS100F).	Ten	random	
fields	 for	 each	 animal	 were	 captured	 at	 40×	 magnifica-
tion.	 The	 quantification	 was	 determined	 by	 the	 number	
of	TUNEL-	positive	fluorescent	nuclei	divided	by	the	total	
number	of	DAPI-	counterstained	nuclei.	The	result	is	ex-
pressed	 as	 the	 relative	 frequency	 of	 positive	 fluorescent	
labeling	in	all	experimental	groups.43

2.4	 |	 Western blot analysis (n = 6)

After	 euthanasia	 of	 the	 animals	 as	 described	 above,	 the	
left	 and	 right	 QUA	 muscles	 were	 collected,	 pooled	 and	
homogenized	(1%	Triton,	10	mM	sodium	pyrophosphate,	
100	mM	NaF,	10 μg/ml	aprotinin,	1	mM	phenylmethylsul-
fonyl	fluoride,	and	0.25	mM	Na3VO4).	Cell	detritus	was	re-
moved	by	centrifugation	at	13,800	g	for	20	min	at	4°C	and	
the	supernatant	was	subjected	to	sodium	dodecyl	sulfate–	
polyacrylamide	gel	electrophoresis	 (SDS-	PAGE)	gel	elec-
trophoresis.	The	Bradford	method	was	used	to	determine	
the	 total	 protein	 content.	 Total	 protein	 from	 cell	 lysate	
(30	μg)	was	stacked	on	6%–	15%	SDS-	polyacrylamide	gels.

The	 proteins	 were	 transferred	 from	 gels	 to	 nitrocel-
lulose	 membranes	 by	 electrophoresis	 (Mini	 Trans-	Blot	
electrophoretic	 transfer	 cell,	 Bio-	Rad).	 Membranes	
were	 incubated	 with	 the	 appropriate	 primary	 antibod-
ies	 overnight	 at	 4°C	 with	 gentle	 shaking:	 goat	 poly-
clonal	 anti-	4-	HNE	 (Santa	 Cruz	 Biotechnology),	 mouse	
monoclonal	 anti-	anti-	catalase	 (Sigma-	Aldrich),	 rabbit	
anti-	SOD-	2	 (Sigma-	Aldrich),	 and	 rabbit	 polyclonal	 anti-	
glyceraldehyde-	3-	phosphate	 dehydrogenase	 (GAPDH,	
Santa	 Cruz	 Biotechnology).	 The	 membranes	 were	 then	
incubated	with	the	appropriate	secondary	antibody,	anti-	
mouse	or	anti-	rabbit	IgG	conjugated	to	peroxidase	(KPL),	
for	 2  h	 at	 room	 temperature.	 Membranes	 were	 washed	
three	 times	 for	 10  min	 each	 with	 Tris	 buffered	 saline-	
Tween	 20	 (TBST)	 after	 both	 incubations.	 GAPDH	 was	
used	as	a	control	protein	loading.	Protein	bands	were	visu-
alized	using	the	Clarity	Western	ECL	Substrate	(Bio-	Rad).	
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genetools	software	(SynGene)	was	used	for	band	inten-
sities	quantification.

2.5	 |	 Biochemical analysis (n = 5)

After	euthanasia,	the	left	and	right	QUA	muscles	were	re-
moved,	pooled	and	homogenized	in	a	tissue	homogenizer	
with	1 ml	of	PBS,	immediately	immersed	in	liquid	nitro-
gen,	and	stored	in	a	biofreezer	(−70°C).	Subsequently,	the	
samples	 were	 used	 to	 quantify	 enzymatic	 activities	 and	
the	reduced	glutathione	(GSH)	content.

2.5.1	 |	 SOD1	activity

SOD1	activity	was	evaluated	based	on	reducing	nitroblue	
tetrazolium	 using	 a	 xanthine–	xanthine	 oxidase	 system,	
that	is,	superoxide	generation,	which	can	be	measured	by	
the	absorbance	at	420	nm.44	The	results	are	shown	as	SOD	
units	per	mg	of	protein.

2.5.2	 |	 GSH	content

The	total	GSH	content	was	analysed	with	Ellman's	reac-
tion	 using	 5′5′-	dithio-	bis-	2-	nitrobenzoic	 acid	 (DTNB)	 as	
per	Anderson.45	The	yellow	colour	 intensity	was	read	at	
412	nm.	The	results	are	shown	as	nmol	per	mg	of	protein.

2.5.3	 |	 GPx	activity

Quantification	 of	 the	 GPx	 activity	 was	 based	 on	 the	 de-
crease	in	absorbance	at	365	nm	induced	by	0.25	mM	H2O2	
with	 GSH	 (10	mM),	 NADPH,	 (4	mM),	 and	 1  U	 of	 glu-
tathione	reductase	(GR).46	The	results	are	shown	as	nmol	
per	min	per	mg	of	protein.

2.5.4	 |	 GR	activity

GR	 activity	 was	 quantified	 as	 described	 by	 Carlberg	
and	 Mannervick,47	 based	 on	 the	 decrease	 in	 absorb-
ance	 at	 340	nm	 induced	 by	 oxidized	 glutathione	 (GSSG)	
with	 NADPH	 in	 phosphate	 buffer	 (pH  7.8).	 Absorbance	
changes	were	read	from	1	to	10 min.	The	results	are	shown	
as	nmol	per	min	per	mg	of	protein.

2.6	 |	 Statistical analysis

All	the	results	are	presented	as	the	mean	±	standard	devia-
tion	 (SD).	 Comparisons	 were	 carried	 out	 using	 one-	way	

analysis	of	variance	(ANOVA),	followed	by	Tukey's	post	hoc	
t-	test.	p	≤	0.05	was	considered	to	be	statistically	significant.

3 	 | 	 RESULTS

3.1	 |	 Effect of cilostazol on oxidative 
stress in the QUA muscle

There	 was	 an	 intense	 area	 of	 DHE	 fluorescence,	 char-
acterizing	 a	 significant	 increase	 in	 the	 production	 of	
ROS,	in	the	mdxS	group	compared	with	the	Ctrl	group	
(Figure  1).	 After	 the	 experimental	 treatments,	 there	
was	a	reduction	in	ROS	production	in	the	mdxC	group	
(about	56%)	relative	to	the	mdxS	group	(Figure 1).

The	mdxS	group	showed	a	significant	 increase	 in	the	
number	of	 lipofuscin	granules	 in	 the	QUA	muscle	com-
pared	with	the	Ctrl	group,	characterizing	the	high	chronic	
oxidative	 pattern	 in	 dystrophic	 animals	 (Figure  1).	 The	
mdxC	group	had	a	significantly	reduced	number	of	lipo-
fuscin	granules	(about	47%)	in	the	QUA	muscle	compared	
with	the	mdxS	group	(Figure 1).

4-	HNE	increased	in	the	QUA	muscle	of	the	mdxS	group	
(Figures 1, S1).	Cilostazol	treatment	significantly	reduced	
4-	HNE	 levels	 in	 the	mdxC	group	 (about	11%)	compared	
with	the	mdxS	group	(Figures 1, S1).

3.2	 |	 Effect of cilostazol on the 
antioxidant activity in the QUA muscle

CAT	increased	in	the	treated	and	untreated	mdx	groups	
compared	with	the	Ctrl	group,	but	there	was	not	a	signifi-
cant	 difference.	 The	 SOD2	 levels	 were	 similar	 in	 all	 ex-
perimental	groups	(Figure 2).

The	GSH	levels	were	increased	in	the	QUA	muscle	of	
the	mdxS	and	mdxC	groups	compared	with	the	Ctrl	group	
(Figure 2).	There	were	no	difference	in	SOD1	between	the	
mdxS	and	mdxC	groups	(Figure 2).

There	was	a	significant	difference	in	GR	and	GPx	ac-
tivity:	They	increased	significantly	in	the	mdxS	and	mdxC	
groups	compared	with	the	the	Ctrl	group	(Figure 2).

3.3	 |	 Effect of cilostazol on apoptosis 
in the QUA muscle

There	was	an	accumulation	of	cells	undergoing	apoptosis	
in	the	mdxS	group	compared	with	the	Ctrl	group	(Figure 3).	
The	mdxC	group	had	a	significantly	reduced	number	of	ap-
optotic	cells	(about	71%)	compared	with	the	mdxS	group.	
This	 reduction	 in	 the	number	of	apoptotic	cells	observed	
in	both	experimental	 treatments	 indicates	 that	 the	drug's	
effects	are	associated	with	oxidative	stress	(Figure 3).
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4 	 | 	 DISCUSSION

In	the	present	study,	the	administration	of	cilostazol	signif-
icantly	reduced	oxidative	stress	markers	(DHE	[measure	
of	ROS],	lipofuscin	granules,	and	4-	HNE	protein	adducts)	
and	the	number	of	apoptotic	cells	in	the	QUA	muscle	of	
mdx	mice.	The	interaction	between	these	two	events	high-
lights	 the	 metabolic	 complications	 of	 dystrophic	 muscle	
fibres,	given	that	apoptosis	induced	by	ROS	overproduc-
tion	is	one	of	the	results	of	mitochondrial	dysfunction.48	
Consistent	with	these	findings,	exercised	mdx	mice	treated	
with	tempol,	a	potent	anti-	oxidant,	showed	increased	lev-
els	 of	 mitochondrial	 biogenesis	 regulators.49	 We	 chose	
to	 investigate	 the	 interaction	 of	 cilostazol	 against	 oxida-
tive	stress	and	apoptosis	in	the	QUA	muscle	of	mdx	mice	
because	 it	presents	metabolic	alterations	 that	have	been	
strongly	 established	 in	 the	 literature.33–	35	 Although	 the	
TUNEL	method	is	often	considered	the	gold	standard	for	

the	detection	of	apoptosis	in	situ	due	to	its	high	sensitiv-
ity,	the	false	positivity	of	TUNEL	against	programmed	ne-
crotic	cell	death	(necroptotic	cells)	should	be	considered	
in	the	present	study.50,51	Considering	that	the	basal	lamina	
was	not	identified	in	the	present	method,	it	is	important	
to	make	it	clear	that	TUNEL+	nuclei	may	be	satellite	cells	
or	myonuclei,	but	may	also	be	fibrocytes,	fibroadipogenic	
precursor	cells	(FAPs)	and/or	macrophages,	that	are	pre-
sent	in	dystrophic	muscle.52,53

Oxidative	stress	and	apoptosis	are	present	in	early	stages	
of	the	disease	in	mdx	mice.9,10,25,26	The	use	of	anti-	oxidants	
such	as	N-	acetylcysteine,	tempol,	green	tea,	or	ascorbic	acid	
in	mdx	mice	<30	days	of	age	demonstrates	beneficial	results	
in	the	disease	phenotype	by	decreasing	muscle	weakness,	
inflammation,	and	dystrophic	tissue	degeneration.54–	58	We	
demonstrated	 previously	 that	 cilostazol	 administration	
attenuated	markers	of	oxidative	stress	(DHE	and	4-	HNE)	
and	inflammation	in	the	DIA	of	mdx	mice	associated	with	

F I G U R E  1  (A)	Quadriceps	(QUA)	cross-	sections	showing	dihydroethidium	(DHE,	n = 5	each	group)	fluorescence	and	autofluorescent	
lipofuscin	granules	(LIPO,	white	arrow,	n = 5	each	group)	in	C57BL/10	mice	(Ctrl),	saline-	treated	mdx	mice	(mdxS),	and	cilostazol-	treated	
mdx	mice	(mdxC).	(B)	The	graph	shows	the	DHE	staining	area	(%)	in	the	Ctrl,	mdxS,	and	mdxC	groups.	(C)	The	graph	shows	the	number	of	
lipofuscin	granules	×	10−4/mm3	in	the	Ctrl,	mdxS,	and	mdxC	groups.	(D)	Western	blotting	analysis	(n = 6	each	group)	of	4-	hydroxynonenal	
(4-	HNE)-	protein	adducts.	Bands	corresponding	to	protein	adducts	formed	by	the	reaction	of	4-	HNE	with	nucleophilic	protein	residues	(top	
panel)	and	glyceraldehyde-	3-	phosphate	dehydrogenase	(GAPDH;	used	as	a	loading	control)	(bottom	row)	are	shown.	(E)	The	graphs	show	
protein	levels	in	the	crude	extracts	of	QUA	muscle	from	the	Ctrl,	mdxS	and	mdxC	groups.	All	values	are	expressed	as	mean	±	standard	
deviation	(SD).	**p	≤	0.001	compared	with	the	Ctrl	group,	***p	≤	0.0001	compared	with	the	Ctrl	group	(Student's	t-	test).	#p	≤	0.05	compared	
with	the	mdxS	group,	##p	≤	0.001	compared	with	the	mdxS	group,	###p	≤	0.0001	compared	with	the	mdxS	group	(Student's	t-	test).	The	scale	
bar	is	100	μm.
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preservation	of	muscle	strength.40	In	cardiomyocytes	from	
rats	under	oxidative	stress,	cilostazol	prevented	mitochon-
drial	 dysfunction	 by	 attenuating	 cardiac	 mitochondrial	
edema,	ROS	production,	and	changes	in	the	mitochondrial	
membrane	potential	of	cardiac	cells.59	Comparatively,	the	
anti-	oxidant	effect	of	cilostazol	is	as	effective	as	other	classic	
anti-	oxidant	compounds	already	tested	in	the	mdx	model	
in	terms	of	improving	the	dystrophic	phenotype.	Tempol,	a	
potent	anti-	oxidant,	has	been	shown	to	reduce	myonecrosis	
and	inflammation,	associated	with	a	reduction	in	oxidative	
stress	markers	such	as	DHE,	lipofuscin	granule	count,	and	
4-	HNE	 in	 the	diaphragm	muscle	of	mdx	mice.54,55,60	The	
use	of	the	anti-	oxidant	N-	acetylcysteine	had	a	beneficial	ef-
fect	on	dystrophic	muscle	tissue	by	reducing	indicators	of	
oxidative	stress,	inflammation	and	fibrosis.42,61,62	Similarly,	
green	tea	extract	as	well	as	its	isolated	compounds	decreased	
muscle	necrosis	in	mdx	mice	via	antioxidant	pathways.63–	65	
These	studies	support	our	results	in	terms	of	attenuation	of	
oxidative	stress	markers	in	the	QUA	muscle	of	mdx	mice;	
however,	the	exact	mechanism	is	unclear.

Dystrophic	 muscles	 present	 functional	 ischemia	 gen-
erated	by	low	production	of	nitric	oxide	(NO)	in	skeletal	
and	endothelial	muscle	cells.66–	70	Cilostazol	has	an	effect	
on	vascular	smooth	muscle	cells,	which	from	both	the	in-
crease	in	cAMP,	and	from	the	inhibition	of	PDE-	3,	is	able	
to	 promote	 the	 relaxation	 of	 the	 endothelium,	 and	 as	 a	
consequence,	vasodilation.36	With	the	lack	of	blood	flow	
and	oxygen	supply,	there	is	a	decrease	in	ATP	production,	
which	induces	anaerobic	metabolism,	producing	a	lower	
level	of	anti-	oxidant	agents	in	cells.71	Therefore,	it	is	pos-
sible	that	vasodilation	contributes,	in	part,	to	the	improve-
ment	of	the	redox	state	of	dystrophic	muscle.	However,	in	
the	 present	 study,	 changes	 in	 anti-	oxidant	 enzymes	 and	
GSH	content	 in	 the	QUA	muscle	of	mdx	mice	were	not	
observed	after	a	14-	day	treatment	with	cilostazol.

The	beneficial	effects	of	cilostazol,	such	as	antiplatelet	
and	anti-	inflammatory	properties,	are	attributed	to	activa-
tion	of	AMP-	activated	protein	kinase	(AMPK).72–	74	AMPK	
plays	an	important	role	in	regulating	the	energy	balance	
of	eukaryotic	cells:	It	monitors	changes	in	the	ATP	level,	

F I G U R E  2  (A)	Western	blotting	analysis	(n = 6	each	group)	of	catalase	(CAT)	and	superoxide	dismutase	2	(SOD2)	content	in	
the	quadriceps	(QUA)	from	C57BL/10	mice	(Ctrl),	saline-	treated	mdx	mice	(mdxS),	and	cilostazol-	treated	mdx	mice	(mdxC).	Bands	
corresponding	to	proteins	(top	and	middle	row)	and	glyceraldehyde-	3-	phosphate	dehydrogenase	(GAPDH;	used	as	a	loading	control)	
(bottom	row)	are	shown.	The	graphs	show:	protein	levels	of	(B)	CAT	and	(C)	SOD2;	biochemical	analysis	(n = 5	each	group)	of	content	of	
(D)	reduced	glutathione	(GSH)	and	(F)	superoxide	dismutase	1	(SOD1),	and	activity	of	(E)	glutathione	peroxidase	(GPx)	and	(G)	glutathione	
reductase	(GR)	in	the	crude	extracts	of	QUA	muscle	from	the	Ctrl,	mdxS,	and	mdxC	groups.	All	values	are	expressed	as	mean	±	standard	
deviation	(SD).	*p	≤	0.05	compared	with	the	Ctrl	group,	***p	≤	0.0001	compared	with	the	Ctrl	group	(Student's	t-	test).
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increasing	 the	 rate	 of	 ATP	 production	 pathways	 and/or	
decreasing	 the	 rate	 of	 ATP	 utilization	 pathways,	 as	 well	
as	regulating	the	biogenesis	and	degradation	of	mitochon-
dria.75,76	 In	 skeletal	 muscle,	 AMPK	 transmits	 a	 part	 of	
the	signal	by	which	muscle	contraction	increases	glucose	
uptake	into	the	cell.77	Studies	have	described	the	radical	
scavenger	 action	 and	 apoptotic	 cell	 death	 of	 cilostazol	
by	 AMPK	 activation	 and	 its	 effect	 on	 energy	 homeosta-
sis	 and	 mitochondrial	 protection.37,78	 Supporting	 this,	
our	results	showed	those	effects	without	 influencing	the	
anti-	oxidant	 system,	 consistent	 with	 previous	 observa-
tion	in	the	DIA.40	Studies	indicate	an	increase	in	GPx	and	
SOD-	1	in	the	mdx	mouse,	but	in	the	pre-	necrotic	period	
of	muscle	degeneration.79	In	agreement	with	our	results,	
cilostazol	 administration	 significantly	 reduced	 malondi-
aldehyde,	an	 indicator	of	 lipid	peroxidation,	but	did	not	
significantly	alter	the	activity	of	the	anti-	oxidant	enzymes	
SOD	and	CAT	(catalase)	in	an	experimental	model	of	aor-
tic	occlusion.37

Chronic	AMPK	stimulation	in	mdx	mice	has	produced	
beneficial	phenotypic	changes	in	dystrophic	skeletal	mus-
cle,	such	as	a	shift	 from	type	II	 (fast	and	glycolytic)	my-
ofibers	 to	 type	 I	 (slow	 and	 oxidative),	 accompanied	 by	
increased	 utrophin	 expression	 and	 improved	 stability	 of	

the	sarcolemma.80	Abou-	Samra	et	al.81	administered	adi-
ponectin	as	an	AMPK	activator	and	observed	a	reduction	
in	 inflammation,	 oxidative	 stress,	 and	 muscle	 damage,	
associated	with	 increased	expression	of	myogenic	differ-
entiation	 markers,	 as	 well	 as	 upregulation	 of	 utrophin	
in	 the	 tibialis	 anterior	 muscle	 of	 mdx	 mice,	 results	 that	
are	 consistent	 with	 our	 findings.	 Similarly,	 studies	 have	
shown	that	suppression	of	apoptosis	 is	 related	 to	activa-
tion	of	the	AMPK	pathway.82–	84	AMPK	pathway	activation	
via	 cilostazol	 protected	 rat	 hepatocytes	 against	 alcohol-	
induced	 apoptosis.85	 Therefore,	 based	 on	 our	 findings	
and	other	studies,	we	suggest	that	the	anti-	oxidant	action	
of	cilostazol	and	the	prevention	of	apoptosis	in	the	QUA	
muscle	 observed	 in	 the	 present	 study	 may	 be	 related	 to	
the	activation	of	AMPK	and	to	regulatory	pathways	of	mi-
tochondrial	biogenesis.	Future	studies	are	needed	to	test	
this	hypothesis.

Based	on	the	results,	it	was	possible	to	verify	a	potent	
anti-	oxidant	 action	 of	 cilostazol	 by	 reducing	 markers	 of	
oxidative	stress	and	prevention	of	apoptosis	 in	 the	QUA	
muscle	of	mdx	mice,	which	was	not	associated	with	en-
dogenous	 enzymatic	 anti-	oxidant	 regulation.	 The	 atten-
uation	of	oxidative	stress	and	programmed	cell	death	 in	
the	 QUA	 muscle	 evidences	 a	 possible	 regulation	 of	 the	

F I G U R E  3  (A)	Quadriceps	(QUA)	
cross-	sections	showing	apoptotic	cells	
(terminal	deoxynucleotidyl	transferase	
dUTP	nick	end	labeling	[TUNEL]	
positive,	white	arrow;	DAPI	positive,	
white	arrowhead.	n = 5	each	group)	in	
C57BL/10	mice	(Ctrl),	saline-	treated	mdx	
mice	(mdxS),	and	cilostazol-	treated	mdx	
mice	(mdxC).	(B)	The	graph	shows	the	
relative	frequency	of	positive	fluorescent	
labeling	to	apoptotic	cells	(%)	in	the	Ctrl,	
mdxS,	and	mdxC	groups.	(C)	All	values	
are	expressed	as	the	mean	±	standard	
deviation	(SD).	*p	≤	0.05	compared	with	
the	Ctrl	group,	***p	≤	0.0001	compared	
with	the	Ctrl	group	(Student	t-	test).	
###p	≤	0.0001	compared	with	the	mdxS	
group	(Student	t-	test).	The	scale	bar	is	
50	μm.
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metabolic	pattern	of	the	dystrophic	cell;	however,	future	
studies	are	still	necessary	to	investigate	this	relationship.	
Cilostazol	represents	a	potential	pharmacological	strategy	
for	the	treatment	of	DMD.
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