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Abstract
Life-history traits, such as reproductive allocation, sexual expression, sex ratio, and reproductive success, are central aspects 
of a species’ ecology and evolution. For example, bias in male and female sex expression may play a large role in determin-
ing the viability of populations in the face of environmental pressures, such as population fragmentation, climate change 
and habitat occupancy. Thus, in this study, we investigated reproductive traits in 10 meta-populations of Fissidens flaccidus 
Mitt. From each meta-population, 30 patches were randomly selected, and 1 cm2 samples were collected form each patch. 
A total of 20,173 ramets were analyzed and classified into male, non-sporophytic female, sporophytic female, and non-sex 
expressing. In addition, population density in each patch was quantified. Our results showed that relative reproductive allo-
cation in perigonia and sporophytes is greater than perichaetia. Trade-off between sexual relative reproductive allocation 
and asexual gemma production was observed, suggesting an important role of female ramets in asexual reproduction. The 
number of male ramets does not influence the reproductive success observed in each patch, and ramet density may induce 
male sex expression. Thus, we concluded that reproductive allocation in male function is efficient, since fewer male ramets 
can assure a considerable reproductive success. Furthermore, our results suggest that there may be a habitat preference 
between the sexes, since male ramets are found in patches with high density and mostly below female ramets, suggesting an 
avoidance of direct sunlight by male ramets.
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Introduction

Life history is a schedule of key events in an organism’s life 
cycle, and is usually defined in terms of life-history traits 
averaged across individuals within a population (Oli and 
Coulson 2016). This life history theory asserts that vital 
functions, such as growth, reproduction, maintenance and 
defense, compete for limited resources obtained by an organ-
ism (Delph 1999). It is often observed that the allocation 
of resources in different traits of the organism's life his-
tory induces trade-offs (Stearns 1976; Delph et al. 1996). 
Such trade-offs represent the costs paid when the available 
resource is allocated differentially among traits (Stearns 
1989; Obeso 2002). For example, in the aquatic monocot 
Butomus umbellatus L., plants that are pollinated show a 
significant reduction in clonal bulbil (Thompson and Eckert 
2004). Thus, trade-offs are commonly observed in reproduc-
tive traits, showing a crucial influence in the demography 
and maintenance of populations (Rydgren and Okland 2003; 
Horsley et al. 2011).
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Reproductive traits, such as sex expression (proportion of 
individuals that are expressing sex) and sex ratio (proportion 
of females and male in a population), are important vari-
ables influencing the reproductive performance of popula-
tion (Glime and Bisang 2017b). In this context, many biotic 
or abiotic factors can affect development and reproductive 
traits. For instance, some species need high levels of humid-
ity to express sexuality, as during the rainy season, while 
others do not (Maciel-Silva et al. 2012; Maciel-Silva and 
De Oliveira 2016). Sexual reproduction plays an important 
role in maintaining species, and in some cases, population 
density is a determining factor of reproductive performance. 
Density dependence has been recurrently reported in spe-
cies of plants and animals (Hanski 1990; Gunton and Kunin 
2009). Furthermore, sexual systems which are defined by 
Leonard (2018) as “pattern of gender allocation that char-
acterizes a species”, have also been linked to the reproduc-
tive success of populations, for example in Fissidens scari-
ous Mitt., and Fissidens submarginatus Bruch., which have 
reproductive traits differently associated with sexual systems 
(Santos et al. 2020).

In plants, the sexual system is classified in relation to 
the distribution (distance) between reproductive struc-
tures (Bergh and Verboom 2011). Species that have male 
and female reproductive structures on the same plant are 
classified as monoecious, and dioecious species that have 
reproductive structures on separate plants. However, in 
bryophytes, as the reproductive structures are produced in 
the haploid phase, these systems are called monoicous and 
dioicous (Glime and Bisang 2017a).

The simple architecture of vegetative and reproductive 
organs of bryophytes makes them excellent models for 
ecological studies (Harris et al. 2020). Indeed, bryophytes 
are considered models to understand the ecology and evo-
lution of sexual systems (Suzuki et al. 2018; Harris et al. 
2020), reproductive allocation (Stark and Brinda 2013; San-
tos et al. 2022), and reproductive cost (Bisang and Ehrlén 
2002; Rydgren and Økland 2002). Evidence suggests that 
reproductive allocation is strongly related to sexual systems 
in bryophytes. Sexual systems of bryophytes present a gra-
dient of distance between the sexes, and the more distant 
the sexes, the greater is the relative reproductive allocation 
(proportion of resource allocated to reproduction) in the 
male function is expected (Stark and Brinda 2013). Repro-
ductive allocation may also change over different reproduc-
tive seasons, mainly on functionally dioecious plants, in 
which sex expression may change following environmental 
variation (Glime and Bisang 2017a). Indeed, reproductive 
allocation may be more responsive to different habitat con-
ditions in functionally dioicous bryophytes (rhizautoicous 
system which male and female ramet are spatially separated, 
however attached only by rhizoids) (Stark and Brinda 2013; 
Santos et al. 2018) than in dioicous species (Alvarenga et al. 

2013). Given the importance of dioecious systems in the 
promotion and maintenance of genetic diversity of plants 
(Renner and Ricklefs 1995; Barrett 2002), studies on func-
tionally dioecious species may clarify the role of habitat 
heterogeneity in the sex expression (Stehlik et al. 2008), 
including reproductive allocation.

In this study, we quantified the reproductive allocation 
(absolute and relative), and the following reproductive traits: 
sexual expression, sex ratio, reproductive success, and popu-
lation density for a monoicous species that has similarities 
with dioicy. Fissidens flaccidus Mitt. is a species of moss 
with a rhizautoicous sexual system that reproduces sexually 
and asexually (by clavate gemma in stem tissues). The rhi-
zautoicous system presents individualized male and female 
ramets that are connected, at least initially, by rhizoids. 
This sexual system, therefore, functionally resembles the 
dioicous system, since the ramets presumably do not com-
pete for resources for their development and formation of 
reproductive structures. In this context, we investigate the 
following questions: First, is male relative reproductive allo-
cation greater than female? This is the usual pattern found 
in dioicous mosses for pre-fertilization allocation (Stark and 
Brinda 2013), and rhizautoicous species have segregation 
of sexual functions (functionally dioicous). Therefore, we 
expect the reproductive allocation at the prezygotic level 
to be greater in male sexual function compared to female 
sexual function. Second, is there a trade-off between sexual 
and asexual reproduction? Since, according to life history 
theory, the resources available to individuals are finite, and 
these resources are subject to competition among differ-
ent life history features or phases (Oli and Coulson 2016). 
Therefore, we expect that ramets that have higher relative 
reproductive allocation will produce less gemmae. Third, is 
the number of male ramets a determinant greater reproduc-
tive success for females? Since the greater the quantity of 
male ramets expressing sex, the greater the quantity of male 
gametes and consequently the chance of fertilization of the 
female gametes. Thus, we expect that the meta-populations 
that have the highest number of males will, consequently, 
have greater reproductive success. Fourth, is meta-popula-
tion density related to the sexual expression of ramets? As 
density dependence effects are recurrent in many animals 
and plants, we expect that meta-population density influ-
ences the reproduction of the species.

Materials and methods

Study species, study site, and sampling

Fissidens flaccidus Mitt. is a monoicous acrocarpous moss 
with rhizautoicous sexual system. The rhizautoicous system 
has male ramets, those that have perigonia (modified leaves 
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enclosing antheridia) and female ramets, those that have per-
ichaetia (modified leaves enclosing archegonia) connected 
by rhizoids. F. flaccidus is distributed in the Neotropical 
region, Africa, New Guinea, and Australia (Pursell 2007). 
In Brazil, the species has a wide distribution, so that they are 
found in all Brazilian phytogeographic domains (Amazon, 
Caatinga, Cerrado, Atlantic Forest, Pampa, and Wetland) 
(Bordin and Yano 2013; Flora do Brasil 2021). F. flacci-
dus produces sporophytes in the rainy season, in addition to 
presenting clavate gemmae in ramets (Santos et al. 2018).

Sampling was carried out in July 2021 in the gardens of 
the Biosciences Center of the Federal University of Pernam-
buco (Recife, Brazil). According to Alvares et al. (2013), 
Recife has a tropical, hot, and humid climate according to 
the Köppen classification, with an average monthly tempera-
ture of 23 °C. The rainy season occurs in the autumn–winter 
period (March–August), with June–July being the rainiest 
months (Coutinho et al. 1998). The Biosciences Center has 
isolated gardens, in which meta-populations of F. flaccidus 
are often found. Thus, we selected 10 gardens to collect 
the material. The size of the gardens where the samples 
were collected ranged from 144m2 (12 × 12 m) to 400m2 
(20 × 20 m), and each garden presented a minimum dis-
tance of 10 m. The sizes of the patches varied considerably, 
since some patches had few ramets while others had an area 
larger than 900cm2 (30 × 30 cm). In each meta-population, 
30 patches were randomly selected. In each selected patch, 
samples of 1 × 1 cm were collected, totaling 30 cm−2 per 
meta-population. The samples were placed in small Petri 
dishes to preserve the structures in the ramets.

In the laboratory, the samples were analyzed to confirm 
the species identification. The ramets were then quantified 
for each sample and classified into the following catego-
ries: (1) male—ramets with perigonia; (2) non-sporophytic 
female—ramets with perichaetia; (3) sporophytic female—
ramet with sporophyte, and (4) non-sex expressing ramet—
without gametoecia or sporophyte.

Reproductive allocation and gemma production

To quantify reproductive allocation and gemma produc-
tion, 50 ramets were randomly selected from each of the 
following categories: non-sporophytic female; sporophytic 
female, and non-sex expressing, and 48 male ramets (male 
ramet density was lower in meta-populations of F. flacci-
dus) for the entire study. These collections were performed 
in meta-populations where male ramets had already been 
found. Since, where male ramets were found, the other cat-
egories of ramets were always found. For each ramet, the 
gemmae were separated of ramets and counted. Posteriorly 
gametangia were counted without destroying gametoecia. 
Fissidens simple structure and distichous leaf arrangement 
makes it possible to quantify gametangia without destroying 

gametoecia. After, ramets were washed with distilled water. 
Then, the perigonia, perichaetia and sporophytes were 
extracted and stored in small paper envelopes together with 
it respective ramets.

Envelopes with the ramets and reproductive structures 
were then covered with aluminum foil and placed to dry 
in an oven for 72H at 70 ℃. Once removed from the oven, 
the envelopes were placed in a box sealed with silica gel. 
Then, reproductive structures (perigonia, perichaetia and 
sporophytes), and ramets were weighed. To carry out the 
weighing, an ultra-micro-analytical balance model SE2 
ultra-micro-balance, of Sartorius, Goettingen, Germany, 
precision of 0.1 μg was used.

After weighing, the reproductive allocation was quanti-
fied as absolute and relative. Absolute reproductive alloca-
tion was quantified by the biomass of the reproductive struc-
tures (perigonia, perichaetia, and sporophyte). Relative 
reproductive allocation was quantified as the proportion of 
biomass allocated to reproduction. We follow the formula: 
RA = RB

RB+VB
 where RA is relative reproductive allocation, 

RB is reproductive biomass, and VB is ramet biomass 
(McLetchie and Puterbaugh 2000).

Reproductive traits

Sex expression, sex ratio, reproductive success, 
and meta‑population density

Sex expression was calculated as the proportion of ramets 
that expressed sex for both the sample (1 × 1 cm) and for 
the entire meta-population. The sex ratio was quantified 
as the ratio of female to male ramets. Reproductive suc-
cess was calculated by the proportion of female ramets that 
formed sporophytes. Finally, the meta-population density 
was quantified as the number of ramets/cm2. All reproduc-
tive traits were calculated for the samples and for the entire 
meta-population.

Statistical analysis

Reproductive allocation and gemma production

After transformation (log), the data were not normally dis-
tributed, and non-parametric analyses were used. The data 
used was without the transformation. The Kruskal–Wallis 
test was used to compare ramet biomass, absolute reproduc-
tive allocation, relative reproductive allocation and gemma 
production between different sexual conditions. To compare 
gametangia of male and non-sporophytic female ramets, we 
applied a Wilcoxon test.
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Once it was clear that gemma production varied with sex 
expression and sex, we tested possible trade-offs between the 
different functions. To test possible trade-off among repro-
ductive traits (sexual versus asexual), we used Generalized 
Linear Model (GLM). First, we tested if gemma produc-
tion is related to ramet biomass and absolute reproductive 
allocation. To answer this question, we created two models, 
a full model in which the amount of gemmae produced as 
response variable and the ramet biomass and the absolute 
reproductive allocation as predictor variables, with a Pois-
son distribution along with a model null, which tests the 
randomness of the data. Then a comparison was carried out 
between the two models with chi-square test. Since there 
were no differences between the models, no significance was 
observed. Even so, we checked the full model summary to 
see the results.

The second trade-off among reproductive traits was also 
tested with a GLM. We created two models, one being a full, 
with response variable as gamma production and predictor 
variables as relative reproductive allocation and ramet bio-
mass and a null model. Since the chi-square test between 
null and full model was significantly different, we excluded 
the null model and analyzed the full model. The model sum-
mary was then analyzed for data interpretation, and interac-
tions were tested. The distribution applied in the model was 
Poisson; since under-dispersion was observed, the distribu-
tion was changed to quasi-Poisson.

Reproductive traits

First, sexual expression was analyzed. The normality of the 
variable was tested, and non-parametric tests were applied, 
given the non-normality of the data. Thus, the expression 
rate between meta-populations was compared using the 
Kruskal–Wallis test. The sex ratio was quantified by the ratio 
of female ramets (sum of sporophytic and non-sporophytic 
ramets) divided by the number of males. The Chi-square test 
was applied to confirm the sexual bias of the meta-popula-
tion. We applied the Kruskal–Wallis test to compare repro-
ductive success between meta-populations. Metapopulation 
density was reported by density graphs.

Once we observed that the fertilization rate was higher 
in samples with high density and with greater numbers of 
male ramets, we applied a GLM to determine if the amount 
of male ramets and the density of the samples influence 
reproductive success. We created a full model, where the 
response variable was the reproductive success, and the pre-
dictor variables were the amount of male ramets and the 
sample density. Thus, full model was compared with null 
model. For both models, the distribution was binomial and 
compared via the chi-square test. Since the result was signifi-
cant, the null model was excluded. The dispersion of the data 
was checked, and since it was over-dispersion, the model 

distribution was changed to quasi-binomial. The model was 
analyzed using a test of variance via the F test.

The GLM was also applied to determine if meta-popula-
tion density influences sex expression on male ramets. For 
that, two models were created, namely: full model, having 
as response variable the amount of male ramets and as pre-
dictor variable the density of samples, and null model. For 
both models, the distribution was Poisson. The full and null 
models were compared via chi-square test. Once the test 
was significant, the null model was excluded, and the full 
model was used to analyze the data. Data dispersion was 
checked and neither over-dispersion nor under-dispersion 
was observed.

The analyses were performed using the RStudio software 
version 1.4.1717 (RStudio Team 2021). The Multicomp 
package (Hothorn et al. 2016) was used to perform the post 
analysis of the GLMs. The Package ‘dunn.test’ (Dinno and 
Dinno 2017) was used to perform Dunn's test as a post hoc 
analysis in the Kruskal–Wallis test. The ggplot2 (Wickham 
et al. 2016) package was used to make the maps.

Results

Reproductive allocation and gemmae production

The male ramets had lower vegetative biomass compared 
to other ramets category (non-sex expressing, sporophytic 
and non-sporophytic females) (Table 1), which in turn did 
not differ from each other (X2 = 73.55, df = 3, P < 0.0001) 
(Fig. 1. a). Allocation at the prezygotic level (perigonia 
and perichaetia) did not differ from each other (Fig. 1b). 
However, the absolute allocation of the sporophyte was sig-
nificantly higher (X2 = 169.85, df = 3, P < 0.0001) (Table 1). 
Relative reproductive allocation was similar between male 
plants and female sporophytic plants (Table 1), whereas 
non-sporophytic females had a significantly lower relative 
reproductive allocation than male and sporophyte plants 
(X2 = 151.26, df = 3, P < 0.0001) (Fig. 1c). Gemma pro-
duction was significantly lower in male plants (X2 = 62.38, 
df = 3, P = 0.0001), whereas the other ramet categories 
did not differ from one another (Fig. 1d). Male and female 
ramets produced similar numbers of gametangia (W = 948.5, 
P = 0.10) (Table 1).

Regarding the trade-off between gemma production and 
the ramet and reproductive biomass variables, the full and 
null GLM models did not show significant differences, sug-
gesting the model's non-significance; the summary of the 
full model indicated no association between the variables. 
Thus, ramet biomass and absolute reproductive allocation 
do not show any association (Table 2). On the other hand, 
the model that tested whether gemma production is associ-
ated to relative reproductive allocation and ramet biomass 



291Oecologia (2023) 201:287–298	

1 3

was significant. According to the results, those plants that 
allocate a greater amount of resource to relative reproductive 
allocation, have a lower gemma production (Fig. 2). Fur-
thermore, the model showed significance in the interactions 

between relative reproductive allocation and vegetative bio-
mass, suggesting that the smaller the growth and relative 
reproductive allocation, the greater the gemma production 
(Table 3).

Table 1   Mean and standard deviation of ramet mass, absolute reproductive allocation, relative reproductive allocation, and gemma production

Kruskal–Wallis parameters are represented in the last columns of the table

Variables Sexual condition Kruskal–Wallis

Male
(X ± SD)

Non-sporophytic female
(X ± SD)

Sporophytic female
(X ± SD)

Non-expressing sex
(X ± SD)

X2 df P

Vegetative mass (mg) 0.0139 ± 0.0137 0.0639 ± 0.0315 0.0568 ± 0.0324 0.0655 ± 0.0377 73.55 3  < 0.01
Absolute reproductive alloca-

tion (mg)
0.0046 ± 0.0030 0.0070 ± 0.0028 0.0223 ± 0.0085 _ 169.76 2  < 0.01

Relative reproductive alloca-
tion (%)

30.32 ± 14.22 11.88 ± 7.87 30.49 ± 8.19 _ 150.98 2  < 0.001

Gemma amount (n) 2.44 ± 4.71 18.66 ± 14.15 14.84 ± 12.41 12.04 ± 9.67 62.38 3  < 0.001

Fig. 1   Graphs reporting a ramets biomass, b absolute reproductive allocation, c relative reproductive allocation and d amount of gemma pro-
duced. The letters indicate the significance parameters
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Reproductive traits

The results indicated that sexual expression is roughly 
equivalent among meta-populations (X2 = 252.11, df = 218, 
P = 0.05) (Table 4). Metapopulations 2, 3, 7, and 10 had 
the highest sexual expression proportion (Fig. 3). While 
meta-population 6, has a no sex expression. Regarding sex 
ratio, all meta-populations showed a bias toward females 
(Table 4). However, the exact sex ratio was quantified for 
meta-populations 1, 3, 5, 7 and 10, as they were the only 
meta-populations that presented male ramets. Thus, the 
analyses showed that all meta-populations that expressed 
sex were biased toward females (Supplementary tab 1).

Reproductive success (proportion of females that formed 
sporophytes) did not differ between meta-populations that 
presented sporophytes (X2 = 108.46, df = 91, P = 0.09) 
(Fig. 4). The meta-populations that showed greater repro-
ductive success (1, 3, 5 and 7) presented higher meta-pop-
ulation density (Fig. 5). While meta-population 10 showed 
lower density and a lower tendency in the production of 
sporophytes. Suggesting that meta-population density can 
influence the reproductive success of populations.

Regarding the GLM result that we investigated whether 
reproductive success is higher in samples with high density 
and with a greater amount of male ramet, it did not show any 
significant result (Table 5). On the other hand, the model 
that was applied to investigate if population density entails 
male sex expression, presented a significance (Table 6). This 
model showed that population density is an important factor 
to male ramets express their sex.

Discussion

Sexual systems differ in morphological and reproductive 
attributes, which confer different mechanisms for each 
sex. However, the variation in the spatial distance between 
the sexes can characterize the reproductive allocation and 
meta-population dynamics of the species. Our main findings 
indicated that: (1) reproductive allocation is higher in male 
function; (2) there is a trade-off between sexual and asexual 
reproduction and (3) that density is a limiting factor in male 
sexual expression (the greater the population density, the 
greater the sexual expression of male ramets). These results 
indicate a similarity in reproductive patterns observed recur-
rently in dioicous bryophytes species. Thus, we can state that 
rhizautoicous sexual systems are monoicous sexual systems 
that behave like a dioicous system. Since in this sexual sys-
tem, male and female ramets are individualized and con-
nected only by rhizoids, that is, each ramet has a resource 
intended only for a sexual function, male or female, as in 
dioicous species. Since the only function of the rhizoids is 
to make the adhesion of the ramets to the substrate.

Table 2   Results of Generalized Linear Models (GLM)

Response variable (gemma production), predictor variables (gametan-
gia biomass, and ramet biomass
n.s. not significant

Generalized Linear Models (GLM)—Gemma production

Df Deviance

Gametangia biomass 1 20.10n.s

Ramet biomass 1 2.42n.s

Observations 197
Akaike information criterion NA
Residual deviance 2506.5 (Df = 194)
Null deviance 2529 (Df = 196)

Fig. 2   Scatterplot of trade-off between relative sexual reproductive 
allocation (% ramet biomass) and gemma production (number ramet/
cm2)

Table 3   Results of Generalized Linear Models (GLM). Response var-
iable (gemma production), predictor variables (Relative reproductive 
allocation, and ramet biomass)

** p < 0.01
*** p = 0.001
n.s Not significant

Generalized Linear Models (GLM)—Gemma production

Df Deviance

Relative reproductive allocation 1 20.10**

Vegetative biomass 1 117.44n.s

Reproductive relative allocation 
versus vegetative biomass

1 215.24***

Observations 197
Akaike information criterion NA
Residual deviance 2176.2 (Df = 193)
Null deviance 2529.0 (Df = 196)
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The high relative reproductive allocation 
in the male function reflects a trade‑off

Gender differences were not observed in the absolute repro-
ductive allocation in the prezygotic phases (perigonia and 
perichaetia formation). On the other hand, for relative repro-
ductive allocation, male ramets had a significantly higher 
mean. This pattern of greater reproductive allocation in male 
function compared to females is observed in most dioicous 
species and some rhizautoicous species (Stark et al. 2000; 
Horsley et al. 2011; Stark and Brinda 2013; Santos et al. 
2018). Stark and Brinda (2013) noted that, as the distances 

Fig. 3   Sexual expression of rhizautoicous moss Fissidens flaccidus. 
Percentage of ramets male, non-sporophytic female, sporophytic 
female, and non-sex expressing

Fig. 4   Density graphics show ramet density per meta-population

Fig. 5   Bar plot represents reproductive success by meta-population 
with error bar

Table 5   Results of Generalized Linear Models (GLM)

Response variable (reproductive success), predictor variables (Male 
ramets, and total ramets)
n.s. Not significant

Generalized Linear Models (GLM)
Response variable as reproductive success

Df Deviance

Male ramets 1 0.0026n.s

Total ramets 1 11.5135n.s

Observations 300
Akaike information criterion NA
Residual deviance 283.31 (Df = 27)
Null deviance 294.82 (Df = 29)

Table 6   Results of Generalized Linear Models (GLM)

Response variable (male sexual expression), predictor variables (Pop-
ulation density)
*** p < 0.0001

Generalized Linear Models (GLM)
Response variable as male sexual expression

Df Deviance

Populational density 1 298***
Observations 300
Log likelihood  − 1,356.703
Akaike information criterion NA
Residual deviance 644.59 (Df = 298)
Null deviance 877.09 (Df = 299)
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between males and females increase, the greater is the rela-
tive reproductive allocation in male function. Thus, in rhi-
zautoicous sexual systems where male and female ramet 
connections dissolve, plants can be considered functionally 
dioicous. It is expected that the larger the distance between 
the male and female ramets, the chances of fertilization 
decline. Indeed, results reported by several studies confirm 
this expectation (Glime and Bisang 2017b). Thus, we can 
infer that this pattern (greater sexual relative reproductive 
allocation in male function) may be interpreted as an evo-
lutionary strategy that increases the chance of fertilization 
in sexual systems showing large distances between sexual 
functions.

Male ramet biomass is lower than other ramet catego-
ries (non-sex expressing, sporophytic, and non-sporophytic 
female). This result has been related to this same species 
(Santos et al. 2018), and a strong sexual dimorphism was 
measured. The lower male ramet biomass may be related 
to reproductive cost using relative reproductive allocation. 
According to Obeso (2002), there are many definitions of 
reproductive cost, among them, direct cost is defined as 
somatic costs of reproduction during the current repro-
ductive season. Therefore, if a direct cost is related to the 
current reproductive season, a trade-off between growth 
and reproduction is expected. Indeed, male ramets have a 
much smaller biomass than females, since the proportion 
of resources allocated to perigonia is relatively high and 
these resources are not available for growth. In this context, 
phenological observations can provide clues to the effect 
of reproductive allocation on species biology. For instance, 
Santos et al. (2020) reported on a study where the phenology 
of two species of Fissidens with different sexual systems was 
observed, namely: Fissidens scarious Mitt.—rhizautoicous; 
and Fissidens submarginatus Bruch.—gonioautoicous. The 
authors observed that in the species with the rhizautoicous 
sexual system, protandry occurred, as they allocate more 
resources to reproduction, compared to the gonioautoicous 
(with male and female sex structures produced distally along 
single ramets) species. In addition, the sexual system that 
presented the highest reproductive allocation (rhizautoicous) 
was more seasonal. While the gonioautoicous system pre-
sented antheridia production throughout the year, however, 
in those ramets that formed sporophytes, a greater amount of 
aborted antheridia was found, suggesting reproductive cost.

Reproductive allocation competes for resources 
with asexual reproduction

The results showed that reproductive allocation for sex-
ual reproduction (i.e., resource allocated to the formation 
of perigonia, perichaetia, and sporophytes) entails fewer 
resources for gemma production. Trade-offs occur because 
environments are variable, often seasonal, and the plants are 

sessile organisms, they must adjust to these conditions. In 
this context, trade-offs can be interpreted as adjustments to 
environmental variations (Liu et al. 2009). A clear example 
of a trade-off between sexual and asexual reproduction was 
reported in a liverwort by Laaka-Lindberg (2001) in the spe-
cies Lophozia silvicola H. Buch, where the author found 
female plants allocating more resources to sexual reproduc-
tion compared to male plants. On the other hand, the amount 
of gemma was higher in plants that did not express sex, and 
the average increased from males to females. The latter 
finding makes it clear that sexual and asexual reproduction 
competes for resources produced by the plant. Nonetheless, 
this trade-off relationship between sexual and sexual func-
tions has been reported recurrently in bryophytes (Kimmerer 
1991; Bisang and Ehrlén 2002; Fuselier and Mcletchie 2002; 
Rydgren and Okland 2003; McLetchie and Stark 2006; Hed-
derson and Longton 2008; Stark et al. 2009; Horsley et al. 
2011).

Metapopulation density can influence 
the reproductive fitness of meta‑populations

Our results showed that the density of male ramets is not a 
factor increasing reproductive success in meta-populations 
of F. flaccidus. Thus, our findings indicate that the large 
reproductive allocation directed at male sexual function is 
efficient in bringing about the reproductive success of the 
studied meta-populations. Reese (1984) showed that in dioi-
cous Syrrhopodon texanus Sull. male plants are very rare. 
However, when males are found, there are also females bear-
ing sporophytes, similar to our results. Regarding sex ratio 
in dioicous bryophytes, commonly populations are found 
with female bias. For instance, Stark (2002) reports that 
2/3rd of the studied dioicous species (N = 30) have popula-
tions with a female bias, 5 with a male bias, and 5 without a 
sexual bias. In the same sense, Bisang and Hedenäs (2005) 
show that approximately 80% of analyzed species (N = 103) 
presented a female bias. However, although less studied, 
rhizautoicous species tend to express a female ramet bias, 
namely: Atrichum undulatum (Hedw.) P. Beauv., Tortula 
muralis Hedw. (Longton and Miles 1982),Weissia contro-
versa Nees & Hornsch. (Anderson and Lemmon 1972), and 
Fissidens scarious Mitt. (Santos et al. 2020). Deviating from 
this expected pattern is the moss Aloina bifrons (De Not.) 
Delgad. (Stark and Brinda 2013).

Metapopulation density was associated with male sexual 
expression induction, that is, the denser the meta-popula-
tion, the greater the chance of male ramets expressing sex. 
Male reproductive allocation in dioicous and functional 
dioicous species, have been related to phenology since it is 
more costly. According to phenological patterns, usually in 
those plants where there is greater reproductive allocation 
in a function, they are developed first. Indeed, protandry 
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is commonly observed in these plants with greater repro-
ductive allocation in male function. For example, in Aloina 
bifrons (De Not.) Delgad., Stark and Brinda (2013) showed 
that the development of the male plants preceded the female 
ramets and, at the end of the experiment, a greater amount of 
male ramets was observed. Similar to the findings by Santos 
et al. (2020), however, the number of female ramets was 
higher in rhizautoicous Fissidens scarious. Thus, we can 
suggest that meta-population density may create alternative 
microhabitat that favors male ramets’ expression, which may 
take advantage from specific conditions created by higher 
or lower densities. However, we emphasize that other fac-
tors may be influencing the results found. In addition, more 
studies focusing on understanding the effects of density on 
sexual expression need to be carried out.

The preference for microhabitat in relation to sex has been 
reported in some bryophyte studies. For example, Bowker 
et al. (2000) found habitat preferences by sex in the widely 
distributed desert dioicous moss Syntrichia caninervis Mitt. 
in populations from the Mojave Desert in Nevada (USA). It 
was observed that male plants tend to establish and persist 
in shade, compared to female plants that are found across a 
span of shaded and open microhabitats. In the same sense, 
Cameron and Wyatt (1990) reported for the monoicous spe-
cies Splachnum ampullaceum Hedw., Splachnum sphaeri-
cum Hedw., and dioicous Splachnum rubrum Hedw. that low 
light intensity and other factors favor the formation of male 
ramets. Thus, an explanation that population density is asso-
ciated with male sexual expression is suggested, since the 
greater density of patches leads to a favorable microclimate 
for the ramets to express the male sex. Furthermore, the male 
ramets have a reduced size that are mostly protected near 
the female plants. Thus, more studies need to be carried out 
with functionally dioicous species to know if male ramets 
show preference for habitat, as our findings only suggest 
this association.

Thus, we can conclude that the studied meta-popula-
tions present characteristics of dioicous species such as 
greater reproductive allocation in the male sexual function. 
In addition, the reproductive allocation in the male func-
tion is sufficient to generate greater reproductive success. 
Since the number of male ramets is not positively correlated 
with the fertilization rate, meta-populations that have few 
male ramets have the potential to induce greater reproduc-
tive success as well as meta-populations that have many 
male ramets. Finally, our results suggest a possible pref-
erence for habitat in relation to male ramets, since these 
are always present in meta-populations that present higher 
density. Thus, we emphasize that the system investigated 
in this study (rhizautoicous) is strongly plastic, since the 
same ramet that forms perigonia can form perichaetia when 
it regenerates. Resembling to the moss Atrichum undulatum 
(Hedw.) P. Beauv., in which the branches have the potential 

to produce male and female gametangia, but each one in 
different seasons. Furthermore, considering that the climate 
change scenario will certainly impact the reproduction bryo-
phytes (Shortlidge et al. 2017), the rhizautoicous system can 
be considered an excellent sexual system to investigate the 
effect of climate change, since it may have identical geno-
types for different sexes (Stearns 1989).
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