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The number of integuments found in angiosperm ovules is variable. In orchids, most 
species show bitegmic ovules, except for some mycoheterotrophic species that show 
ovules with only one integument. Analysis of ovules and the development of the seed 
coat provide important information regarding functional aspects such as dispersal 
and seed germination. This study aimed to analyze the origin and development of the 
seed coat of the mycoheterotrophic orchid Pogoniopsis schenckii and to compare 
this development with that of other photosynthetic species of the family. Flowers and 
fruits at different stages of development were collected, and the usual methodology 
for performing anatomical studies, scanning microscopy, and transmission microscopy 
following established protocols. P. schenckii have ategmic ovules, while the other species 
are bitegmic. No evidence of integument formation at any stage of development was 
found through anatomical studies. The reduction of integuments found in the ovules 
could facilitate fertilization in this species. The seeds of P. schenckii, Vanilla planifolia, and 
V. palmarum have hard seed coats, while the other species have seed coats formed by 
the testa alone, making them thin and transparent. P. schenckii, in contrast to the other 
species analyzed, has a seed coat that originates from the nucellar epidermis, while in 
other species, the seed coat originates from the outer integument.

Keywords: anatomy, integument, Epidendroideae, saprophytic, Vanilloideae

INTRODUCTION
Flowers are highly variable structures, resulting in a great morphological diversity and a variety of 
adaptive processes in angiosperms (Endress, 1994; Friis et al., 2011). Variations in flower size and 
number of whorls, besides the presence or absence of fused floral parts, are caused by differences 
that occur during the development of floral organs. Plants exhibit open organization, which means 
that their organs are generally exposed, and that they do not have any organ or parts of organs 
internalized, with the exception of carpels (Endress, 2015). In turn, carpels can be free or united, 
becoming curved during their initial development, with edges getting closed or sealed when they 
are fully developed (Endress, 2006). While most floral organs are exposed, mainly due to the action 
of pollinating agents (e.g., animals, wind, and water), ovules are completely enclosed in the carpel a 
condition known as angiospermy (Endress, 2006).

Ovules are female reproductive structures that develop in the seeds (Bouman, 1984; Endress, 2011). 
Despite their relatively stable basic structure, ovules have a wide diversity of form, varying in terms of 
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their position in the ovary, size, curvature, number and thickness of 
integument, funiculus length, and degree of vascularization (Endress, 
2011). For angiosperms, there are records of bitegmic, unitegmic, 
and ategmic species (Bouman, 1984; Endress, 2011). Although most 
angiosperms are bitegmic, variation in the number and thickness 
of integuments can be observed at different taxonomic levels, such 
as in families and genera. For example, in Olacaceae, there are 
described bitegmic, unitegmic, and ategmic species (Brown et al., 
2010). In Melastomataceae, ovules are bitegmic; however, in species 
of the same genus, the number of the outer integument layers can 
vary from two to many (Caetano et al., 2018).

Previous studies have described the main function of 
integuments as the delimitation of the micropyle, and protection 
to the embryo sac and embryo (Herrero, 2001); however, they 
may also have other functions in species of different families. 
For example, the inner epidermis of the inner integument can 
function as a secretory tissue, playing a role in the nutrition of 
the embryonic sac. This layer of cells is known as integumentary 
tapetum (Kapil and Tiwari, 1978). Another hypothesis is that the 
number of integument layers could be related to the fruit type 
and seed dispersal mode. A study performed with several species 
of Melastomataceae tried to confirm if there was a relationship 
between ovules with multiseriate outer integument and fleshy 
fruits (Caetano et al., 2018). The data obtained did not confirm this 
relation; however, ancestral state reconstruction shows a tendency 
for ovules with multiseriate outer integument to occur in fleshy fruit 
clades. Recent studies conducted with Arabidopsis show that the 
number of ovule integument layers is related to gene and hormone 
expression (Bencivenga et al., 2012; Gomez et al., 2016; Coen and 
Magnani, 2018) and may be responsible for the seed coat diversity 
observed in angiosperms. After fertilization, the integument layers 
go through different pathways to establish a protective barrier for 
the embryo (Windsor et al., 2000). There is an immense diversity in 
seed structure, such as size, color, texture, and shape; this diversity 
is related to dispersal and germination strategies (Boesewinkel and 
Bouman, 1984), and may have been initially determined by the 
arrangement and number of ovule integuments.

In most angiosperms, the formation of ovules is complete 
when anthesis starts. In Orchidaceae, however, a different 
pattern is observed, where in the development of ovules and 
their respective placental proliferation are conditioned to the 
pollination event (Swamy, 1949a). In general, orchids have 
low reproductive success because of low pollination rates 
(Cozzolino and Widmer, 2005). Thus, ovules will be produced 
only if there is guaranteed seed formation, in order to prevent 
unnecessary energy expenditure (Arditti, 1992). The formation 
of the integuments in orchids occurs simultaneously with 
the formation of the embryonic sac. To date, in most species 
studied, the embryonic sac is bitegmic (Swamy, 1949a; Yeung 
and Law, 1997; Mayer et al., 2011). However, four unitegmic 
species, which are all mycoheterotrophic, have been described 
in previous studies (Abe, 1976; Arekal and Karanth, 1981; 
Krawczyk et al., 2016; Li et al., 2016).

Mycoheterotrophic plants are aclorophyllated and are completely 
dependent on carbon available through their association with fungi 
throughout their life cycle (Leake, 1994). Recent phylogeny using 
plastid and mitochondrial genomes in Orchidaceae show that 

mycoheterotrophic species evolved several times independently 
(Li et al., 2019). In the family, 235 species with this condition 
are described (Merckx et al., 2013), and little is known about the 
reproductive process of these species. Owing to the importance of 
the seed coat in the life cycle of plants, and because it is considered 
a stable characteristic, understanding its structure and development 
can reveal information relevant to its functional aspects, such as 
dispersal and seed germination (Bouman, 1984; Windsor et al., 2000; 
Endress, 2011). Thus, the objective of this work was to analyze the 
origin and development of the seed coat of the mycoheterotrophic 
orchid Pogoniopsis schenckii Cogn, and to compare this development 
with that of other species in the family that have chlorophyll 
and present different mechanisms of seed dispersal, Polystachya 
estrellensis Rchb.f., Elleanthus brasiliensis Rchb.f., Isochilus linearis 
(Jacq) Barb.Rodr., and Cleistes libonii (Rchb. f.) Schltr.—species 
that exhibit anemochory, and Vanilla planifolia Jacks. ex Andrews 
and Vanilla palmarum (Salzm ex. Lindl.) Lindl.—species showing 
evidence of zoochory (Cribb, 1999). Pogoniopsis schenckii is an 
endemic mycoheterotrophic species found in the Brazilian Atlantic 
Forest. Prior studies indicate a tendency of reduction in the number 
of integuments in species of mycoheterotrophic plants, including 
orchids (Abe, 1976; Arekal and Karanth, 1981; Maas and Ruyters, 
1986; Bouman et al., 2002; Endress, 2011; Krawczyk et al., 2016; Li 
et al., 2016). Thus, our hypothesis is that P. schenckii also exhibits 
reduction in the number of integuments, leading to a greater 
exposure of the ovule and simplification of the seed coat involving 
the embryo, which may facilitate the penetration of fungal hyphae. 
In this context, structural information on the reproductive organs of 
mycoheterotrophic species, especially P. schenckii, can contribute to 
the elucidation of processes related to the symbiosis between fungi 
and mycoheterotrophic species. In addition, since the mode of seed 
dispersal of P. schenckii is not known, characterization of the stages 
of development of its seeds can contribute to the understanding of 
the ecological interactions involved in the dispersal and colonization 
of new habitats.

MATERIAl AND METhODs

species studied and literature Review
Pogoniopsis schenckii Cogn. -Epidendroideae- is aclorophyllated 
and remains underground for almost its entire life cycle. During 
its reproductive phase, a floral stem appears above ground level; 
afterwards, flowers and fruits develop. Polystachya estrellensis 
Rchb. f., Elleanthus brasiliensis Rchb. f., Isochilus linearis (Jacq) 
Barb. Rodr., belonging to the subfamily Epidendroideae, and 
Cleistes libonii (Rchb. f.) Schltr., Vanilla planifolia Jacks. ex 
Andrews, and Vanilla palmarum (Salzm ex. Lindl.) Lindl., 
belonging to the subfamily Vanilloideae, are photosynthetic 
species that are found in all Brazilian regions, and in different 
phytogeographical domains, such as the Cerrado, Atlantic 
Forest, and Amazon. Voucher specimens were deposited at the 
Herbarium of the University of Campinas (HUEC), Campinas, 
São Paulo, Brazil, and the registration numbers are: 196921, 
205027, 161354, 197343, 205047, 205028, and 20502.

A literature review was carried out to verify the number of species 
that developed bitegmic ovules, and the number of species that 
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developed unitegmic ovules. The following keywords were used to 
search publication databases: embryo development in Orchidaceae, 
embryology in Orchidaceae, and integuments in Orchidaceae.

Anatomic Analyses
To analyze the integument development freshly opened flowers 
off all species were collected. For E. brasilliensis and V. palmarum 
fruits from natural pollinations at different developmental stages 
were collected. For P. schenckii freshly opened flowers were 
marked and monitored. For the other species we carried out 
experimental self-pollination in flowers during the first day of 
anthesis. The flowers were then monitored and fruits at different 
stages of development were collected with 15, 20, 25, 30, 60, and 
90 opening flower/days after pollination. All material was fixed 
in Karnovsky (Karnovsky, 1965), dehydrated in serial dilutions 
of ethanol, and were infiltrated with hydroxyethylmethacrylate 
(Gerrits and Smid, 1983). The samples were sectioned at 4 μm 
thickness using a Leica RM2245 rotary microtome, stained with 
Toluidine Blue 0.05% in phosphate buffer, pH 4.5 (Sakai, 1973), 
and mounted using Entellan® synthetic resin (Merck®). The 
slides were analyzed under an Olympus BX51 optical microscope 
and photographed with an Olympus DP71 digital camera.

Scanning Electron Microscopy
Botanical material was fixed in Karnovsky’s solution (Karnovsky, 
1965), dehydrated using a serial dilution of ethanol and critical 
point dried under carbon dioxide (CO2) in a Balzers model CPD 
030 Critical Point Dryer. The material was then mounted on metal 
supports and coated with colloidal gold for 220 s on the Bal-Tec 
model SCD 050 equipment. Analysis and electron micrograph 
recordings were performed using a LEO VP 435 scanning electron 
microscope at 20 kV, at the Institute of Biology/UNICAMP.

Transmission Electron Microscopy
To analyze the changes occurring during the development of 
P. schenckii seed coat, ovules, and seeds at different stages of 
development were fixed using 2.5% glutaraldehyde in 0.2 M sodium 
cacodylate buffer, pH 7.25, for 24 h (Mc Dowel and Trump, 1976). 
Post-fixation was performed with 1.0% osmium tetroxide (OsO4) 
in sodium cacodylate buffer for 12 h in the dark (Gabriel, 1982). The 
material was dehydrated in a series of increasing concentrations of 
acetone solution and soaked in LR White® resin according to the 
manufacturer’s instructions. The ultrafine sections were prepared 
with Leica ultramicrotome using diamond knife. The ultrafine 
sections were contrasted with uranyl acetate (Bozzola and Russel, 
1998) and lead citrate (Hanaich et al., 1986), examined under a 
Philips EM 100 transmission electron microscope at 80 kV, and 
documented with Eastman Kodak 5302 (35 mm) film.

REsUlTs
Literature review showed that 97 species of orchids of different 
subfamilies, 2 species of Vanilloideae, 8 species of Cypripedioideae, 
31 species of Orchidoideae, and 56 species of Epidendroideae, had 
been evaluated till date. Regarding these species, 93 presented 
bitegmic ovules, and 4 presented unitegmic ovules (Table 1 and 

Supplementary Table 1). With the 6 new species included in this 
study, a total of 103 species have been evaluated in terms of the 
type of ovule integuments.

All species analyzed in this study are teninucellate and bitegmic, 
except for P. schenckii (Figures 1A–J), which has an ategmic ovule. 
P. schenckii is the first species within Orchidaceae possessing this 
characteristic. There is no growth of integuments at any stage 
of development (Figures 1A, B, I, J). The embryonic sac is only 
covered by the nucellar epidermis, which exhibit cells with high 
metabolism, thin walls, and evident nucleus (Figures 1A, B, E, 
F). Owing to the absence of integuments, there is no micropyle 
formation in the ovule of the species (Figures 1B, I, J, K).

In other species, the development of integuments occurs from 
periclinal divisions in the epidermal cells located at the base of the 
ovules, which is seen in both the subfamily Epidendroideae (Figures 
2A–P) and in the subfamily Vanilloideae (Figures 3A–Q). During 
ovule development, the inner integument grows and recovers the 
nucellar epidermis. In P. estrellensis, E. brasiliensis, I. linearis, and C. 
libonii, the outer integument grows and covers the inner integument 
(Figures 2A–D, G–L, M–O and 3A–E). In P. estrellensis, the outer 
integument has three layers (Figure 2C). The initial development 
of the integuments in V. planifolia and V. palmarum show that the 
outer integument also has three layers (Figure 3P). In other species, 
the outer integument has two layers, and in all the species analyzed, 
the inner integument has two layers (Figures 2M and 3B).

After fertilization, changes are observed in the integument of all 
species. In P. schenckii (i.e., about 25 days after the floral opening), 
the seed coat becomes hard and forms from the nucellar epidermis 
itself (Figures 1C, D, G, H, L). It is possible to observe that 
during development of the seed coat there is an accumulation of 
substances that confers the cytoplasm a dense aspect (Figures 1G, 
H). When mature, the seed presents a brown-colored integument 
(Figure 4A). In P. estrellensis, E. brasiliensis, and I. linearis, the inner 
integument is fully absorbed, and the outer integument undergoes 
elongation. In the outer integument, the inner layer is absorbed, 
and the outer layer gives rise to the seed testa, which, when 
mature, is impregnated with lignin and surrounds the embryo 
(Figures 2D–F, P and 4B–D). In C. libonii, at the beginning of seed 
development (i.e., about 40 days after fertilization), the inner layer 
of the inner integument begins to possess a dense cytoplasm and 
an evident nucleus (Figures 3E, F). Sixty days after fertilization, 
it is possible to observe the presence of a natural yellow-colored 
secretion surrounding the embryo (Figures 3G, H and 4E). In the 
mature seed, only the outer tegument and this secreted layer that 
covers the embryo remain as coat, whereas the inner layer of the 
internal integument is reabsorbed (Figures 2E, P and 4E). This 
substance is probably secreted by the cells of the inner layer of the 
inner integument. In V. planifolia and V. palmarum, the mature 
seed has a hard dark-colored coat (Figures 3M, Q and 4F, G).

DIsCUssION
For the first time the presence of ategmic ovules, as observed in 
P. schenckii, are described in Orchidaceae. Bitegmic ovules are 
commonly in orchids (Swamy, 1949a), but a reduction in ovule 
integuments are commonly observed in mycoheterotrophic 
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TABlE 1 | List of the type of integuments in species of Orchidaceae. 

species subfamily Integument Reference

Cleistes libonii (Rchb. f.) Schltr. Vanilloideae Biteg Present study
Vanilla palmarum (Salzm ex. Lindl.) Lindl. Vanilloideae Biteg Present study
Vanilla planifolia Jacks. ex Andrews Vanilloideae Biteg Nishimura and Yukawa, 2010
Vanilla imperialis Kraenzl. Vanilloideae Biteg Kodahl et al., 2015
Paphiopedilum delenatii Guillaumin Cypripedioideae Biteg Lee and Yeung, 2012
Cypripedium cordigerum D. Don Cypripedioideae Biteg Sood and Mohana Rao, 1988
Cypripedium spectabile (C. hirsutum Mill.) Cypripedioideae Biteg Swamy, 1945
Cypripedium parviflorum Salisb. Cypripedioideae Biteg Pace, 1907
Cypripedium pubenscens (Willd.) Cypripediodeae Biteg Pace, 1907
Cypripedium formosanum Haiata Cypripediodeae Biteg Lee et al., 2005
Cypripedium macranthos Sw. Cypripediodeae Biteg Zeng et al., 2014
Cypripedium japonicum Thunb. Cypripediodeae Biteg Liu et al., 2012
Amitostigma kinoshitae (Makino) Schltr. Orchidoideae Biteg Abe, 1977
Zeuxine gracilis (Breda) Blume Orchidoideae Biteg Gurudeva, 2011
Zeuxine sulcata Lindl. Orchidoideae Biteg Swamy, 1946a
Orchis aristata Fisher Orchidoideae Biteg Abe, 1972
Platanthera tipuloides Lindl. var. nipponica (Makino) Ohwi Orchidoideae Biteg Abe, 1972
Platanthera chlorantha Custer (Rchb.) Orchidoideae Biteg Abe, 1972
Platanthera sachalinensis Fr. Schm. Orchidoideae Biteg Abe, 1972
Peristylus spiralis A. Rich Orchidoideae Biteg Swamy, 1949a
Peristylus stocksii Krzl. Orchidoideae Biteg Swamy, 1949a
Dactylohiza maculata (L.) Vermln. Orchidoideae Biteg Fredrikson et al., 1988
Herminium monorchis (L.) R. Br. Orchidoideae Biteg Fredrikson, 1990
Spiranthes australis Lindl. Orchidoideae Biteg Maheshwari and Naraynaswami, 1951
Spiranthes sinensis (Pers.) Ames Orchidoideae Biteg Lu-Han et al., 2016
Habenaria platyphylla Spr. Orchidoideae Biteg Swamy, 1946b
Habenaria rariflora A. Rich. Orchidoideae Biteg Swamy, 1946b
Habenaria longicalcarata A. Rich. Orchidoideae Biteg Swamy, 1946b
Habenaria decipiens Wight. Orchidoideae Biteg Swamy, 1946b
Habenaria plantagenea Lindl. Orchidoideae Biteg Swamy, 1946b
Habenaria longicornu Lindl. Orchidoideae Biteg Swamy, 1946b
Habenaria marginata Coleb. Orchidoideae Biteg Swamy, 1946b
Habenaria heyeneana Lindl. Orchidoideae Biteg Swamy, 1946b
Habenaria viridiflora R. Br. Orchidoideae Biteg Swamy, 1946b
Habenaria densa Wall. Orchidoideae Biteg Mohana Rao and Sood, 1979
Habenaria galeandra Hook. f. Orchidoideae Biteg Sood, 1986
Habenaria elisabethae Duthie Orchidoideae Biteg Sood, 1986
Habenaria edgeworthii Hook. f. ex. Collett Orchidoideae Biteg Sood, 1986
Habenaria radiata (Thunb.) Spreng. Orchidoideae Biteg Abe, 1972
Habenaria sagittifera (Reichb.) f. Orchidoideae Biteg Abe, 1972
Goodyera repens (L.) R. Br. Orchidoideae Biteg Sood, 1988
Myrmechis japonica (Reichb. f.) Br. Orchidoideae Biteg Abe, 1972
Gymnadenia camtschatica Miyabe et Kudo Orchidoideae Biteg Abe, 1972
Pogoniopsis schenckii Cogn. Epidendroideae Ateg Present study
Polystachya estrelensis Rchb.f. Epidendroideae Biteg Present study
Isochilus linearis (Jacq) Barb. Rodr. Epidendroideae Biteg Present study
Elleanthus brasiliensis Rchb. f. Epidendroideae Biteg Present study
Coelogyne breviscapa Lindl. Epidendroideae Biteg Swamy, 1949a
Coelogyne odorotissima Lindl. Epidendroideae Biteg Swamy, 1949a
Calypso bulbosa L. Epidendroideae Biteg Law and Yeung, 1989
Spathoglotis plicata Bl. Epidendroideae Biteg Swamy, 1949a
Geodorum densiflorum Schlechter. Epidendroideae Biteg Swamy, 1949a
Oncidium flexuosum Sims Epidendroideae Biteg Mayer et al., 2011
Cymbidium sinense (Andr.) Willd. Epidendroideae Biteg Yeung, 1996
Eulophia nuda Lindl Epidendroideae Biteg Swamy, 1949a
Geodorum densiflorum Schlechter. Epidendroideae Biteg Swamy, 1949a
Bulbophyllum mysorense J. J. Smith. Epidendroideae Biteg Swamy, 1949a
Bulbophyllum neilgherrense Wt. Ic. t. Epidendroideae Biteg Swamy, 1949a
Dendrobium barbatulum Lindl. Epidendroideae Biteg Swamy, 1949a
Dendobrium haemoglossum Thw. Epidendroideae Biteg Swamy, 1949a
Dendobrium microbulbon A. Rich. Epidendroideae Biteg Swamy, 1949a
Dendobrium graminifolium Wt. Ic. t. Epidendroideae Biteg Swamy, 1949a
Epidendrum variegatum Hook Epidendroideae Biteg Sharp, 1912

(Continued)
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species, which are unitegmic (Tohda, 1967; Abe, 1976; Arekal and 
Karanth, 1981; Krawczyk et al., 2016; Li et al., 2016). Anatomical 
analyses show that the ovules of P. schenckii develop normally, 
and that there is no evidence of development of integument in the 
ovules of the species at all time points. In this way, the nucellar 
epidermis is responsible for surrounding the embryo sac, and in 
the mature seed, for surrounding the embryo. This result differs 
from the pattern found in other species analyzed in this study, 
which had seed coats originating from the outer integument.

Reduction of integuments occurs independently in different 
groups. They have been described in mycoheterotrophic 
species of Gentianales (Gentianaceae), parasite species of 
Santalales (Balanophoraceae, Loranthaceae, Olacaeae, and 
Santalaceae), and in a photosynthetic species of Aquifoliales 
(Cardiopteridaceae) (Maas and Ruyters, 1986; Bouman 
et al., 2002; Brown et al., 2010; Polli et al., 2016; Sato and 
Maria Gonzalez, 2016; Suaza-Gaviria et al., 2016; Tobe, 2016; 
Gonzalez et al., 2019). Molecular studies show that in ategmic 

ovules of Santalales, the genes associated with the expression 
of the integument are expressed in the periphery of the ovary, 
and that the reduction found in these species is the result of 
the fusion between the integument and the nucellus (Brown 
et al., 2010). In P. schenckii, the reduction of integuments 
leads to a total loss of the micropyle. However, this structural 
reduction does not seem to compromise reproduction, since 
the synergids continue to secrete substances for pollen tube 
attraction. The absence of integuments could facilitate the 
penetration of the synergids (Figure 1B) and subsequent 
fertilization. Mycoheterotrophic orchids have ovules with 
simpler structures, and the absence of a distinct micropyle is 
common in unitegmic species (Tohda, 1967; Abe, 1976; Arekal 
and Karanth, 1981; Li et al., 2016). The micropyle is responsible 
for directing the pollen tube; moreover, both the micropyle 
and secretions released by the synergid that promotes pollen 
tube attraction facilitate fertilization (Cheung and Wu, 2001; 
Okuda et al., 2009; Chen and Fang, 2016).

TABlE 1 | Continued

species subfamily Integument Reference

Epidendrum ibaguense Lindl. Epidendroideae Biteg Yeung and Law, 1989
Gastrodia elata Blume Epidendroideae Uniteg Abe, 1976; Li et al., 2016
Gastrodia nantoensis Epidendroideae Uniteg Li et al., 2016
Microstylis cylindrostachya Reichb. F Epidendroideae Biteg Sood, 1985
Microstylis wallichii Lindl. Epidendroideae Biteg Sood and Mohana Rao, 1986
Malaxis saprophyta (King & Panting) Tang & F.T. Wang Epidendroideae Biteg Sood, 1992
Oberonia iridiflora var. denticulata Hook Epidendroideae Biteg Swamy, 1949a
Epipactis atrorubens (Hoffm.) Besser Epidendroideae Biteg Fredrikson, 1992
Epipactis helleborine (L.) Crantz Epidendroideae Biteg Fredrikson, 1992
Epipactis palustris (L.) Crantz Epidendroideae Biteg Fredrikson, 1992
Epipogium aphyllum Sw. Epidendroideae Uniteg Krawczyk et al., 2016
Epipogium roseum (D. Don) Lindl. Epidendroideae Uniteg Arekal and Karanth, 1981
Rhynchostylis retusa Blume Epidendroideae Biteg Swamy, 1949a
Diplocentrum recurvum Lindl. Epidendroideae Biteg Swamy, 1949a
Diplocentrum conjestrum Wt. Ic. t. Epidendroideae Biteg Swamy, 1949a
Luisia teretrifolia Gaud Epidendroideae Biteg Swamy, 1949a
Luisia teunifolia Bl. Epidendroideae Biteg Swamy, 1949a
Cottonia peduncularis Wt. Ic. t. Epidendroideae Biteg Swamy, 1949a
Saccolabium filiforme Lindl. Epidendroideae Biteg Swamy, 1949a
Saccolabium jerdonianum Reichb. Epidendroideae Biteg Swamy, 1949a
Saccolabium gracile Lindl. Epidendroideae Biteg Swamy, 1949a
Saccolabium pulchellum Fisher. Epidendroideae Biteg Swamy, 1949a
Saccolabium matsuran Makino Epidendroideae Biteg Abe, 1972
Vanda spathulata Spreng Epidendroideae Biteg Swamy, 1949a
Aerides cylindricum Lindl. Epidendroideae Biteg Swamy, 1949a
Aerides ringens Fisher. Epidendroideae Biteg Swamy, 1949a
Phalaenopsis sp. Epidendroideae Biteg Zhang and O’Neill, 1993
Phalaenopsis amabilis var. formosa Shimadzu Epidendroideae Biteg Lee et al., 2008
Eleorchis japonica (A. Gray) F Maekawa Epidendroideae Biteg Abe, 1972
Bletia shepherdii Hook. Epidendroideae Biteg Sharp, 1912
Phaius grandifolius Lour. Epidendroideae Biteg Sharp, 1912
Phaius minor Blume Epidendroideae Biteg Abe, 1972
Phaius tankervilliae (Aiton ) Bl. Epidendroideae Biteg Dong-mei et al., 2006
Calanthe anistrifera Reichb. f. Epidendroideae Biteg Abe, 1972
Calanthe discolor Lindl. Epidendroideae Biteg Abe, 1972
Calanthe torifera Schltr. Epidendroideae Biteg Abe, 1972
Ephippianthus schmidtii Epidendroideae Biteg Abe, 1972
Liparis paradoxa Reichb. Epidendroideae Biteg Sood, 1989
Liparis rostrata Reichb. f. Epidendroideae Biteg Sood, 1989
Acianthera johannensis (Barb Rodr) Pridgeon & M.W. Chase Epidendroideae Biteg Duarte et al., 2019

Ateg, ategmic ovules; biteg, bitegmic ovules; uniteg, unitegmic ovules.
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The differentiation of ovules in the species studied occurred 
after the stimulation of pollination, and the development of 
the integuments in P. estrellensis, I. linearis, E. brasiliensis, C. 
libonii, V. planifolia, and V. palmarum occurs simultaneously 
with the events of the megasporogenesis, as observed in other 
species of the family (Swamy, 1949a; Sood, 1985; Sood, 1986; 
Sood and Rao, 1986; Mayer et al., 2011; Li et al., 2016; Duarte 
et  al., 2019). In most orchids, the outer integument has two 
layers of cells (Swamy 1949a; Wirth and Withner, 1959). 
However, in P. estrellensis, the outer integument was observed 
to have three layers, and the Vanilla species presented ovules 
with outer integuments that had three to four layers of cells in V. 
imperiallis, and four to six layers of cells in V. planifolia (Swamy, 
1947; Nishimura and Yukawa, 2010; Kodahl et al., 2015). It is 
believed that the outer multiseriate integument in Vanilla would 

be related to the larger size of the seed found in the species of the 
genus (Kodahl et al., 2015).

Of all species analyzed, P. schenckii, V. planifolia, and V. 
palmarum have seeds with hard coat. Preliminary results show 
that in P. schenckii, dispersal in the species is very restricted 
(personal data). It was found to not be related to anemochory; 
moreover, dispersal by animals was not observed. Based 
on this, it seems that the hard coat has other unknown 
functions. Population genetics studies have been conducted, 
seeking to understand how this restricted dispersal can 
affect the dynamics of the populations of the species (Alves, 
unpublished data). Besides the hard coat P. schenckii presents 
seed with a large funiculus, differing from the other analyzed 
species. Preliminary analyzes show that the funiculus assists 
in the penetration of fungal hyphae after dispersion (personal 

FIgURE 1 | Longitudinal sections of ovules and seeds of Pogoniopsis schenckii. (A) Megaspore mother cell. Note that there is no formation of integuments. 
(B) Penetrated synergid, egg cell, and polar nuclei. (C) Young seed. (D) Embryo with five cells. (E–h) Transmission microscopy electromyography. (E) Embryo sac 
and nucellar epidermis. (F) Details of the nucellar epidermis which presents cells with thin walls and evident nucleus. (g) Seed coat that originates from the nucellar 
epidermis. (h) Details of the hard seed coat. Note their accumulation of substances that confers the cytoplasm a dense aspect. (I–l) Scanning microscopy 
electromyography. (I–K) Ovule in development. Note that there is no formation of integuments. (l) Seed. cw, cell wall; ec, egg cell; em, embryo; f, funiculus; mc, 
megaspore mother cell; ov, ovule; ne, nucellar epidermis; nu, nuclei; pn, polar nuclei; ps, penetrated synergid; sc, seed coat; se, seed; sy, synergid; va, vacuolo. 
Scale bars A, C, I = 20 µm; B, D, K, L = 50 µm; E, J = 10 µm; F–H = 2 µm.
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data). Seeds with hard coat have also been described for other 
mycoheterotrophic orchids. For Cyrtosia japonica, seeds 
with coats originating from the outer integument and inner 
integument (Yang and Lee, 2014) are registered. In C. japonica, 
the seed presents an outer integument with four layers, and 
the outermost layer later becomes sclerified (Yang and Lee, 
2014). It is suggested that the observed lignification protects 
the embryo when it passes through the alimentary tract of 
its dispersers (Rodolphe et al., 2011; Yang and Lee, 2014). In 
Yonia japonica, the seed also presents a lignified coat; however, 
the fruits and seeds of the species are dispersed by insects 
(Suetsugu, 2018). Similar to Cyrtosia, it is believed that the 
lignified seed coat in Y. japonica is an adaptation that protects 
the seed during digestion (Suetsugu, 2018).

It is assumed that V. planifolia and V. palmarum undergo 
endozoochory dispersal (Cribb, 1999; Kodahl et al., 2015). 

In these species, as in others belonging to Vanilloideae, seeds 
with hard coats exist as a strategy for the dispersal of the genus 
(Kodahl et al., 2015); in addition, hard coats would protect 
seeds that can be dispersed over long distances. In other 
species, seeds were observed to have a thin and transparent 
coat, which is seemingly a common feature in Orchidaceae. 
Seeds from Orchidaceae have small sizes, and are called “dust 
seeds” (Swamy, 1949b; Arditti and Ghani, 2000). The rather 
small size observed in orchid seeds was traditionally thought 
to be an adaptation to long-distance wind dispersal events 
(Arditti and Ghani, 2000). However, recent molecular studies 
have shown discordant patterns that show the orchid seeds 
ability to reach long distances (Cozzolino et al., 2003; Trapnell 
and Hamrick, 2004). Many other species present dispersal 
patterns limited to a few meters (Chung et al., 2004; Chung 
et al., 2005; Ren et al., 2017).

FIgURE 2 | Longitudinal sections of ovules and seeds of Epidendroideae species. (A–F) Ovules and seeds of Polystachya estrellensis. (D, F) Scanning microscopy 
electromyography. (A) Differentiation of the initial archesporial cell. (B) Megaspore mother cell and formation of integuments. (C) Embryo sac. *indicates the outer 
integument with three layers. (D) Embryo sac. (E, F) Seed. (g–l) Ovules of Elleanthus brasiliensis. (J, l) Scanning microscopy electromyography. (g) Differentiation 
of the initial archesporial cell. (h) Formation of integuments indicated by arrows. (I) Megaspore mother cell. (J–K) Formation of integuments. (l) Embryo sac with the 
outer integument developed. (M–P) Ovules and seeds of Isochilus linearis. (M) Megaspore mother cell and formation of integuments. (N, O) Embryo sac with the 
integuments developed. P. Seed. ac, initial archesporial cell; em, embryo; f, funiculus; ii, inner integument; mc, megaspore mother cell; mi, micropyle; ne, nucellar 
epidermis; oi, outer integument; wt, wall thickening. Scale bars A–C; E; G-K; M-P = 20 µm; D, F = 50 µm; L = 10 µm.
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FIgURE 3 | Longitudinal sections of ovules and seeds of Vanilloideae species. (A–I) Ovules and seeds of Cleistes libonii. (C, D, I) Scanning microscopy 
electromyography. (A) Differentiation of the initial archesporial cell. Arrows indicate the initial formation of integuments. (B) Megaspore mother cell and formation of 
integuments. (C, D) Development of integuments. (E) Initial development of embryo. (F–g) Embryo. *indicate the extracellular exudate. (h–I) Seeds. (J–N) Ovules and 
seeds of Vanilla planifolia. (l, N) Scanning microscopy electromyography. (J–K) Megaspore mother cell and formation of integuments. (l) Development of integuments. 
(M, N) Seeds with hard dark-colored coat. (O–Q) Ovules and seed of Vanilla palmarum. (O) Differentiation of the initial archesporial cell. Arrows indicate the initial formation 
of integuments.(P) Megaspore mother cell and formation of integuments. Note the outer integument with three layers. (Q) Seed with hard dark-colored coat. ac, initial 
archesporial cell; em, embryo; f, funiculus; ii, inner integument; il, inner layer of the inner integument; mc, megaspore mother cell; mi, micropyle; ne, nucellar epidermis; oi, 
outer integuments; ol, out layer of the inner integument; wt, wall thickening. Scale bars A, B, E–G, J–M, O–Q = 20 µm; C = 50 µm; D, H, N = 100 µm; I = 200 µm.

FIgURE 4 | Aspects of seeds. (A) Pogoniopsis schenckii. (B) Polystachya estrellensis. (C) Elleanthus brasiliensis. (D) Isochilus linearis. (E) Cleistes libonii. (F) Vanilla 
planifolia. (g) Vanilla palmarum. em, embryo; fu, funiculus; se, seed . Scale bars A, B, C, D, E = 150 µm; F, G = 75 µm.
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Dark-colored hard seed coats, as observed in P. schenckii, 
V. planifolia, and V. palmarum, have already been described 
for Apostasia (Swamy, 1947). Occurrence of phytomelanin 
deposition in Asparagales seeds is described in the literature 
(Dahlgren et al., 1985). Phytomelanin is a dark and insoluble 
pigment that is found in different parts of plants and exhibit 
distinct transport load and structural stability (Nicolaus 
et  al., 1964; Cordero and Casadevall, 2017). Phytomelanin’s 
main function is to confer protection to different conditions, 
such as environmental variations, harmful radiation, 
extreme temperatures, and chemical and mechanical stress 
(Roulin, 2014; Cordero and Casadevall, 2017). The dark-
colored integument in the species studied may result from 
phytomelanin deposition. However, studies are still needed to 
clarify this issue.

The results obtained show novelties in the development 
of the seed coat in Orchidaceae. P. schenckii has an ategmic 
ovule and has a hard seed coat that originates from the 
nucellar epidermis. Mycoheterotrophic plants have numerous 
modifications in their morphology, reproductive biology, 
and physiology (Leake, 1994; Bidartondo, 2005), the most 
prominent among loss of photosynthetic function and 
severe ruptures in the plastid genome (Graham et al., 2016). 
The genomic losses observed may be related not only to 
photosynthetic processes, but also to the absence of genes that 
present other functions, such as genes related to reproductive 
functions. Anatomical analyses show that there is no evidence 
of integument development in the ovules of P. schenckii. Thus, 
the reduction of the integuments found in the species may be 
due to the absence of gene expression, or even the absence of 
genes linked to the development of the integument; however, 
molecular studies are necessary to elucidate this issue.
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